Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Redox Biol ; 50: 102245, 2022 04.
Article in English | MEDLINE | ID: mdl-35114579

ABSTRACT

Application of genetically encoded biosensors of redox-active compounds promotes the elaboration of new methods for investigation of intracellular redox activities. Previously, we have developed a method to measure quantitatively the intracellular concentration of hydrogen peroxide (H2O2) in living cells using genetically encoded biosensor HyPer. In the present study, we refined the method and applied it for comparing the antioxidant system potency in human cells of different phenotypes by measuring the gradient between the extracellular and cytoplasmic H2O2 concentrations under conditions of H2O2-induced external oxidative stress. The measurements were performed using cancer cell lines (K-562 and HeLa), as well as normal human cells - all expressing HyPer in the cell cytoplasm. As normal cells, we used three isogenic lines of different phenotypes - mesenchymal stem/stromal cells (MSCs), induced pluripotent stem cells (iPSCs) derived from MSCs by reprogramming, and differentiated iPSC progenies with the phenotype resembling precursory MSCs. When exposing cells to exogenous H2O2, we showed that at low oxidative loads (<50 µM of H2O2) the gradient depended on extracellular H2O2 concentration. At high loads (>50 µM of H2O2), which caused the exhaustion of thioredoxin activity in the cell cytoplasm, the gradient stabilized, pointing out that it is the functional status of the thioredoxin-depended enzymatic system that drives the dependence of the H2O2 gradient on the oxidative load in human cells. At high H2O2 concentrations, the cytoplasmic H2O2 level in cancer cells was found to be several hundred times lower than the extracellular one. At the same time, in normal cells, extracellular-to-intracellular gradient amounted to thousands of times. Upon reprogramming, the potency of cellular antioxidant defense increased. In contrast, differentiation of iPSCs did not result in the changes in antioxidant system activity in the cell cytoplasm, assuming that intensification of the H2O2-detoxification processes is inherent to a period of early human development.


Subject(s)
Hydrogen Peroxide , Mesenchymal Stem Cells , HeLa Cells , Humans , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Mesenchymal Stem Cells/metabolism , Oxidative Stress , Phenotype
2.
J Pers Med ; 11(6)2021 May 25.
Article in English | MEDLINE | ID: mdl-34070346

ABSTRACT

Endometrial mesenchymal stem/stromal cells (eMSCs) hold great promise in bioengineering and regenerative medicine due to their high expansion potential, unique immunosuppressive properties and multilineage differentiation capacity. Usually, eMSCs are maintained and applied as a monolayer culture. Recently, using animal models with endometrial and skin defects, we showed that formation of multicellular aggregates known as spheroids from eMSCs enhances their tissue repair capabilities. In this work, we refined a method of spheroid formation, which makes it possible to obtain well-formed aggregates with a narrow size distribution both at early eMSC passages and after prolonged cultivation. The use of serum-free media allows this method to be used for the production of spheroids for clinical purposes. Wound healing experiments on animals confirmed the high therapeutic potency of the produced eMSC spheroids in comparison to the monolayer eMSC culture.

3.
Sci Rep ; 9(1): 16253, 2019 11 07.
Article in English | MEDLINE | ID: mdl-31700012

ABSTRACT

Many evidence shows that K+ ions are required for cell proliferation, however, changes in intracellular K+ concentration during transition of cells from quiescence to cycling are insufficiently studied. Here, we show using flame emission assay that a long-term increase in cell K+ content per g cell protein is a mandatory factor for transition of quiescent human peripheral blood lymphocytes (PBL) to proliferation induced by phytohemagglutinin, phorbol ester with ionomycin, and anti-CD3 antibodies with interleukin-2 (IL-2). The long-term increase in K+ content is associated with IL-2-dependent stage of PBL activation and accompanies the growth of small lymphocytes and their transformation into blasts. Inhibition of PBL proliferation with drugs specific for different steps of G0/G1/S transit prevented both blast-transformation and an increase in K+ content per cell protein. Determination of the water content in cells by measuring the density of cells in the Percoll gradient showed that, unlike the K+ content, the concentration of K+ in cell water remains unchanged, since water and K+ change in parallel. Correlation of proliferation with high cell K+ and water content has been confirmed by the data obtained in comparative study of PBL and permanently cycling Jurkat cells. Our data suggest that K+ is important for successful proliferation as the main intracellular ion that participates in regulation of cell water content during cell transition from quiescence to proliferation. We concluded that high K+ content in cells and the associated high water content is a characteristic feature of proliferating cells.


Subject(s)
Cell Cycle , Lymphocyte Activation , Lymphocytes/metabolism , Potassium/metabolism , Water/metabolism , Biological Transport , Biomarkers , Cations/metabolism , Cell Line, Tumor , Humans , Interleukin-2/metabolism , Intracellular Space , Lymphocytes/immunology
4.
Stem Cell Res Ther ; 9(1): 50, 2018 02 26.
Article in English | MEDLINE | ID: mdl-29482664

ABSTRACT

BACKGROUND: Asherman's syndrome (AS) is one of the gynecological disorders caused by the destruction of the endometrium. For some cases of AS available surgical methods and hormonal therapy are ineffective. Stem cell transplantation may offer a potential alternative for AS cure. METHODS: Human endometrial mesenchymal stem cells (eMSC) organized in spheroids were transplanted in rats with damaged endometrium modeled on AS. Treatment response was defined as pregnancy outcome and litter size. RESULTS: Application of eMSC in spheroids significantly improved the rat fertility with the AS model. eMSC organized in spheroids retain all properties of eMSC in monolayer: growth characteristics, expression of CD markers, and differentiation potential. Synthesis of angiogenic and anti-inflammatory factors drastically increased in eMSC assembled into spheroids. CONCLUSIONS: Human endometrial mesenchymal stem cells (eMSC) can be successfully applied for Asherman's syndrome (AS) treatment in the rat model. eMSC organized in spheroids were more therapeutically effective than the cells in monolayer. After transplantation of eMSC in spheroids the pregnancy outcome and litter size in rats with AS was higher than in rats that received autologous rat bone marrow cells. It suggests the therapeutic plausibility of heterologous eMSC in case of failure to use autologous cells.


Subject(s)
Endometrium , Fertility , Gynatresia , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Spheroids, Cellular , Animals , Disease Models, Animal , Endometrium/injuries , Endometrium/metabolism , Endometrium/pathology , Female , Gynatresia/metabolism , Gynatresia/pathology , Gynatresia/therapy , Heterografts , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/pathology , Pregnancy , Rats , Rats, Wistar , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology , Spheroids, Cellular/transplantation
5.
Methods Mol Biol ; 1644: 129-138, 2017.
Article in English | MEDLINE | ID: mdl-28710759

ABSTRACT

Methods commonly used for detection of DNA double-strand breaks (DSBs) and analysis of cell death are generally time-consuming, and, therefore, any improvements in these techniques are important for researchers and clinicians. At present, flow cytometry is the most rapid method for detection of DSBs and cell viability. In this chapter, we provide our experience and methodological modification of flow cytometry protocol for the detection of γ-H2AX, a well-known marker of DSBs, in fixed mammalian fibroblasts. The modifications permit a reduction in the time required for DSB detection by flow cytometry.


Subject(s)
DNA Breaks, Double-Stranded/radiation effects , DNA Repair/radiation effects , Flow Cytometry/methods , Histones/metabolism , Skin/metabolism , Animals , Animals, Newborn , Cells, Cultured , DNA/genetics , DNA/radiation effects , Fibroblasts/cytology , Fibroblasts/metabolism , Fibroblasts/radiation effects , Humans , Mesocricetus , Skin/cytology , Skin/radiation effects , X-Rays
6.
Exp Ther Med ; 12(4): 2447-2454, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27698746

ABSTRACT

Stem cell transplantation, which is based on the application of mesenchymal stem/stromal cells (MSCs), is a rapidly developing approach to the regenerative therapy of various degenerative disorders characterized by brain and heart failure, as well as skin lesions. In comparison, the use of stem cell transplantations to treat infertility has received less attention. One of the causes of miscarriages and fetal growth delay is the loss of the decidual reaction of endometrial cells. The present study modeled decidualization processes in pseudopregnant rats. For cell transplantation experiments, the rats were transplanted with MSCs established from endometrial fragments in menstrual blood (eMSCs). These cells express common MSC markers, are multipotent and are able to differentiate into various tissue lineages. Cell therapy frequently requires substantial cell biomass, and cultivation of MSCs may be accompanied by significant changes to their properties, including malignant transformation. In order to minimize the potential for malignant transformation, the proliferation of eMSCs was irreversibly suppressed by irradiation and mitomycin C treatment. Transplantation of the rats with viable, non-proliferating eMSCs stimulated the development of all elements of decidual tissue. Conversely, transplantation of the rats with cells killed using 95% ethanol did not result in the development of decidual tissue. The present study demonstrated the potential for applying eMSCs to the cellular therapy of infertility associated with endometrial disorders characterized by decidualization insufficiency and implantation failure. In addition, the transplantation of viable but non-proliferating cells ensured that their oncogenic potential was limited.

7.
Amyloid ; 22(2): 100-11, 2015.
Article in English | MEDLINE | ID: mdl-26053105

ABSTRACT

The effect of yeast red pigment on amyloid-ß (Aß) aggregation and fibril growth was studied in yeasts, fruit flies and in vitro. Yeast strains accumulating red pigment (red strains) contained less amyloid and had better survival rates compared to isogenic strains without red pigment accumulation (white strains). Confocal and fluorescent microscopy was used to visualise fluorescent Aß-GFP aggregates. Yeast cells containing less red pigment had more Aß-GFP aggregates despite the lower level of overall GFP fluorescence. Western blot analysis with anti-GFP, anti-Aß and A11 antibodies also revealed that red cells contained a considerably lower amount of Aß GFP aggregates as compared to white cells. Similar results were obtained with exogenous red pigment that was able to penetrate yeast cells. In vitro experiments with thioflavine and TEM showed that red pigment effectively decreased Aß fibril growth. Transgenic flies expressing Aß were cultivated on medium containing red and white isogenic yeast strains. Flies cultivated on red strains had a significant decrease in Aß accumulation levels and brain neurodegeneration. They also demonstrated better memory and learning indexes and higher locomotor ability.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Saccharomyces cerevisiae/metabolism , Alzheimer Disease/pathology , Animals , Blotting, Western , Brain/metabolism , Brain/pathology , Drosophila melanogaster , Flow Cytometry , Motor Activity/physiology , Peptide Fragments/metabolism , Real-Time Polymerase Chain Reaction , Saccharomyces cerevisiae/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...