Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 17(12): e2007507, 2021 03.
Article in English | MEDLINE | ID: mdl-33605015

ABSTRACT

Multiphase microscale emulsions are a material platform that can be tuned and dynamically configured by a variety of chemical and physical phenomena, rendering them inexpensive and broadly programmable optical transducers. Interface engineering underpins many of these sensing schemes but typically focuses on manipulating a single interface, while engineering of the multiphase junctions of complex emulsions remains underexplored. Herein, multiphilic triblock copolymer surfactants are synthesized and assembled at the triphase junction of a dynamically reconfigurable biphasic emulsion. Tailoring the linear structure and composition of the polymer surfactants provides affinity to each phase of the complex emulsion (hydrocarbon, fluorocarbon, and continuous water phase), yielding selective localization of polymers around the triphase junction. Conjugation of these polymers with gold nanoparticles, forming structured rings, affords a dynamic reflected isotropic structural color that tracks with emulsion morphology, demonstrating the uniquely enabling nature of a functionalized triphase interface. This color is the result of interference of light along the internal hydrocarbon/fluorocarbon interface, with the gold nanoparticles scattering and redirecting light into total internal reflection competent paths. Thus, the functionalization of the triphase junction renders complex emulsions colorimetric sensors, a powerful tool toward sensitive and simple sensing platforms.


Subject(s)
Gold , Metal Nanoparticles , Emulsions , Surface-Active Agents , Water
2.
ACS Cent Sci ; 6(8): 1460-1466, 2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32875087

ABSTRACT

Controlled, dynamic movement of materials through noncontacting forces provides interesting opportunities in systems design. Confinement of magnetic nanoparticles to the interfaces of double emulsions introduces exceptional control of double emulsion movement. We report the selective magnetic functionalization of emulsions by the in situ selective reactions of amine-functionalized magnetic nanoparticles and oil-soluble aldehydes at only one of the double emulsion's interfaces. We demonstrate morphology-dependent macroscopic ferromagnetic behavior of emulsions induced by the interfacial confinement of the magnetic nanoparticles. The attraction and repulsion of the emulsions to applied magnetic fields results in controlled orientation changes and rotational movement. Furthermore, incorporation of liquid crystals into the double emulsions adds additional templating capabilities for precision assembly of magnetic nanoparticles, both along the interface and at point defects. Applying a magnetic field to liquid crystal complex emulsions can produce movement as well as reorganization of the director field in the droplets. The combination of interfacial chemistry and precise assembly of magnetic particles creates new systems with potentially useful field-responsive properties.

3.
J Am Chem Soc ; 141(45): 18246-18255, 2019 11 13.
Article in English | MEDLINE | ID: mdl-31675218

ABSTRACT

We report a new class of dynamically reconfigurable complex colloids comprising immiscible liquid crystals (LCs) and fluorocarbon oils. Producing stable spherical droplets requires the utilization of appropriately designed surfactants to reduce the high intrinsic surface tension between the LCs and the fluorocarbon oils that initially lead to nonspherical, "snowman-shaped" Janus droplets. After stabilizing the interfaces via surfactants, the LC droplet morphology can be dynamically switched between LC-in-fluorocarbon-in-water double emulsions (LC/F/W), spherical Janus emulsions, and inverted double emulsions (fluorocarbon-in-LC-in-water, F/LC/W) in response to changes in the surrounding surfactants. These stabilization methods can be extended to smectic LCs to create droplets with more complex internal arrangements and expand the range of LC emulsions that can be prepared. In addition, by using new mesogenic surfactants that control the LC director field at each LC interface, we prepare LC complex colloids exhibiting different internal configurations. The ability to control the LC anchoring conditions made it possible to create topological singularities as powerful templates for the precision assembly of antibodies at the droplets' interface. These dynamic LC complex colloids of controllable morphology and LC orientation are rich soft material platforms that will find utility in a variety of sensing applications.

4.
J Am Chem Soc ; 141(45): 18048-18055, 2019 11 13.
Article in English | MEDLINE | ID: mdl-31674769

ABSTRACT

Interfacial chemistry provides an opportunity to control dynamic materials. By harnessing the dynamic covalent nature of imine bonds, emulsions are generated in situ, predictably manipulated, and ultimately destroyed along liquid-liquid and emulsion-solid interfaces through simple perturbation of the imine equilibria. We report the rapid production of surfactants and double emulsions through spontaneous in situ imine formation at the liquid-liquid interface of oil/water. Complex double emulsions with imine surfactants are stable to neutral and basic conditions and display dynamic behavior with acid-catalyzed hydrolysis and imine exchange. We demonstrate the potential of in situ imine surfactant formation to generate complex surfactants with biomolecules (i.e., antibodies) for biosensing applications. Furthermore, imine formation at the emulsion-solid interface offers a triggered payload release mechanism. Our results illustrate how simple, dynamic interfacial imine formation can translate changes in bonding to macroscopic outputs.

5.
Chem Commun (Camb) ; 51(58): 11642-5, 2015 Jul 25.
Article in English | MEDLINE | ID: mdl-26099041

ABSTRACT

1,3,5-Tris(4-carboxyphenyl)benzene assembles into an intricate 8-fold polycatenated assembly of (6,3) hexagonal nets formed through hydrogen bonds and π-stacking. One polymorph features 56 independent molecules in the asymmetric unit, the largest Z' reported to date. The framework is permanently porous, with a BET surface area of 1095 m(2) g(-1) and readily adsorbs N2, H2 and CO2.

SELECTION OF CITATIONS
SEARCH DETAIL
...