Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 4608, 2024 02 26.
Article in English | MEDLINE | ID: mdl-38409172

ABSTRACT

Individuals with autism spectrum disorder (ASD) often exhibit atypical hippocampal anatomy and connectivity throughout their lifespan, potentially linked to alterations in the neurogenic process within the hippocampus. In this study, we performed an in-silico analysis to identify single-nucleotide polymorphisms (SNPs) in genes relevant to adult neurogenesis in the C58/J model of idiopathic autism. We found coding non-synonymous (Cn) SNPs in 33 genes involved in the adult neurogenic process, as well as in 142 genes associated with the signature genetic profile of neural stem cells (NSC) and neural progenitors. Based on the potential alterations in adult neurogenesis predicted by the in-silico analysis, we evaluated the number and distribution of newborn neurons in the dentate gyrus (DG) of young adult C58/J mice. We found a reduced number of newborn cells in the whole DG, a higher proportion of early neuroblasts in the subgranular layer (SGZ), and a lower proportion of neuroblasts with morphological maturation signs in the granule cell layer (GCL) of the DG compared to C57BL/6J mice. The observed changes may be associated with a delay in the maturation trajectory of newborn neurons in the C58/J strain, linked to the Cn SNPs in genes involved in adult hippocampal neurogenesis.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Mice , Animals , Autistic Disorder/genetics , Mice, Inbred C57BL , Neurons/physiology , Hippocampus/physiology , Neurogenesis/genetics , Polymorphism, Genetic , Dentate Gyrus/physiology
2.
Arch Toxicol ; 97(9): 2371-2383, 2023 09.
Article in English | MEDLINE | ID: mdl-37482551

ABSTRACT

Exposure to toxic elements in drinking water, such as arsenic (As) and fluoride (F), starts at gestation and has been associated with memory and learning deficits in children. Studies in which rodents underwent mechanistic single exposure to As or F showed that the neurotoxic effects are associated with their capacity to disrupt redox balance, mainly by diminishing glutathione (GSH) levels, altering glutamate disposal, and altering glutamate receptor expression, which disrupts synaptic transmission. Elevated levels of As and F are common in groundwater worldwide. To explore the neurotoxicity of chronic exposure to As and F in drinking water, pregnant CD-1 mice were exposed to 2 mg/L As (sodium arsenite) and 25 mg/L F (sodium fluoride) alone or in combination. The male litter continued to receive exposure up to 30 or 90 days after birth. The effects of chronic exposure on GSH levels, transsulfuration pathway enzymatic activity, expression of cysteine/cystine transporters, glutamate transporters, and ionotropic glutamate receptor subunits as well as behavioral performance in the object recognition memory task were assessed. Combined exposure resulted in a significant reduction in GSH levels in the cortex and hippocampus at different times, decreased transsulfuration pathway enzyme activity, as well as diminished xCT protein expression. Altered glutamate receptor expression in the cortex and hippocampus and decreased transaminase enzyme activity were observed. These molecular alterations were associated with memory impairment in the object recognition task, which relies on these brain regions.


Subject(s)
Arsenic , Drinking Water , Pregnancy , Female , Mice , Animals , Male , Fluorides/toxicity , Glutamic Acid/metabolism , Arsenic/toxicity , Receptors, Glutamate/metabolism , Oxidation-Reduction , Brain/metabolism , Memory Disorders/chemically induced , Glutathione/metabolism
3.
Neural Plast ; 2022: 7432842, 2022.
Article in English | MEDLINE | ID: mdl-36213614

ABSTRACT

The dentate gyrus (DG) is the gateway of sensory information arriving from the perforant pathway (PP) to the hippocampus. The adequate integration of incoming information into the DG is paramount in the execution of hippocampal-dependent cognitive functions. An abnormal DG granule cell layer (GCL) widening due to granule cell dispersion has been reported under hyperexcitation conditions in animal models as well as in patients with mesial temporal lobe epilepsy, but also in patients with no apparent relation to epilepsy. Strikingly, it is unclear whether the presence and severity of GCL widening along time affect synaptic processing arising from the PP and alter the performance in hippocampal-mediated behaviors. To evaluate the above, we injected excitotoxic kainic acid (KA) unilaterally into the DG of mice and analyzed the evolution of GCL widening at 10 and 30 days post injection (dpi), while analyzing if KA-induced GCL widening affected in vivo long-term potentiation (LTP) in the PP-DG pathway, as well as the performance in learning and memory through contextual fear conditioning. Our results show that at 10 dpi, when a subtle GCL widening was observed, LTP induction, as well as contextual fear memory, were impaired. However, at 30 dpi when a pronounced increase in GCL widening was found, LTP induction and contextual fear memory were already reestablished. These results highlight the plastic potential of the DG to recover some of its functions despite a major structural alteration such as abnormal GCL widening.


Subject(s)
Dentate Gyrus , Long-Term Potentiation , Animals , Cognition , Dentate Gyrus/metabolism , Fear , Kainic Acid/metabolism , Kainic Acid/toxicity , Long-Term Potentiation/physiology , Plastics/metabolism
6.
Brain Behav Immun ; 97: 286-302, 2021 10.
Article in English | MEDLINE | ID: mdl-34174334

ABSTRACT

The continuous generation of new neurons occurs in at least two well-defined niches in the adult rodent brain. One of these areas is the subgranular zone of the dentate gyrus (DG) in the hippocampus. While the DG is associated with contextual and spatial learning and memory, hippocampal neurogenesis is necessary for pattern separation. Hippocampal neurogenesis begins with the activation of neural stem cells and culminates with the maturation and functional integration of a portion of the newly generated glutamatergic neurons into the hippocampal circuits. The neurogenic process is continuously modulated by intrinsic factors, one of which is neuroinflammation. The administration of lipopolysaccharide (LPS) has been widely used as a model of neuroinflammation and has yielded a body of evidence for unveiling the detrimental impact of inflammation upon the neurogenic process. This work aims to provide a comprehensive overview of the current knowledge on the effects of the systemic and central administration of LPS upon the different stages of neurogenesis and discuss their effects at the molecular, cellular, and behavioral levels.


Subject(s)
Lipopolysaccharides , Neural Stem Cells , Dentate Gyrus , Hippocampus , Neurogenesis
7.
Front Neurosci ; 15: 782947, 2021.
Article in English | MEDLINE | ID: mdl-35046769

ABSTRACT

New neurons are continuously generated and functionally integrated into the dentate gyrus (DG) network during the adult lifespan of most mammals. The hippocampus is a crucial structure for spatial learning and memory, and the addition of new neurons into the DG circuitry of rodents seems to be a key element for these processes to occur. The Morris water maze (MWM) and contextual fear conditioning (CFC) are among the most commonly used hippocampus-dependent behavioral tasks to study episodic-like learning and memory in rodents. While the functional contribution of adult hippocampal neurogenesis (AHN) through these paradigms has been widely addressed, results have generated controversial findings. In this review, we analyze and discuss possible factors in the experimental methods that could explain the inconsistent results among AHN studies; moreover, we provide specific suggestions for the design of more sensitive protocols to assess AHN-mediated learning and memory functions.

8.
Front Neurosci ; 14: 514, 2020.
Article in English | MEDLINE | ID: mdl-32508587

ABSTRACT

Young neurons in the adult brain are key to some types of learning and memory. They integrate in the dentate gyrus (DG) of the hippocampus contributing to such cognitive processes following timely developmental events. While experimentally impairing GABAergic transmission through the blockade or elimination of the ionic cotransporter NKCC1 leads to alterations in the proper maturation of young neurons, it is still unknown if the in vivo administration of common use diuretic drugs that block the cotransporter, alters the development of young hippocampal neurons and affects DG-related functions. In this study, we delivered chronically and intracerebroventricularly the NKCC1 blocker bumetanide to young-adult rats. We analyzed doublecortin density and development parameters (apical dendrite length and angle and dendritic arbor length) in doublecortin positive neurons from different subregions in the DG and evaluated the performance of animals in contextual fear learning and memory. Our results show that in bumetanide-treated subjects, doublecortin density is diminished in the infra and suprapyramidal blades of the DG; the length of primary dendrites is shortened in the infrapyramidal blade and; the growth angle of primary dendrites in the infrapyramidal blade is different from control animals. Behaviorally, treated animals showed the typical learning curve in a contextual fear task, and freezing-time displayed during contextual fear memory was not different from controls. Thus, in vivo icv delivery of bumetanide negatively alters DCX density associated to young neurons and its proper development but not to the extent of affecting a DG dependent task as aversive context learning and memory.

9.
Neural Regen Res ; 14(5): 817-825, 2019 May.
Article in English | MEDLINE | ID: mdl-30688267

ABSTRACT

Adult hippocampal neurogenesis is a finely tuned process regulated by extrinsic factors. Neuroinflammation is a hallmark of several pathological conditions underlying dysregulation of neurogenesis. In animal models, lipopolysaccharide (LPS)-induced neuroinflammation leads to a neurogenic decrease mainly associated to the early inflammatory response. However, it is not well understood how the neuroinflammatory response progresses over time and if neurogenesis continues to be diminished during the late neuroinflammatory response. Moreover, it is unknown if repeated intermittent administration of LPS along time induces a greater reduction in neurogenesis. We administered one single intraperitoneal injection of LPS or saline or four repeated injections (one per week) of LPS or saline to young-adult mice. A cohort of new cells was labeled with three 5-bromo-2-deoxyuridine injections (one per day) 4 days after the last LPS injection. We evaluated systemic and neuroinflammation-associated parameters and compared the effects of the late neuroinflammatory response on neurogenesis induced by each protocol. Our results show that 1) a single LPS injection leads to a late pro-inflammatory response characterized by microglial activation, moderate astrocytic reaction and increased interleukin-6 levels. This response correlates in time with decreased neurogenesis and 2) a repeated intermittent injection of LPS does not elicit a late pro-inflammatory response although activated microglia persists. The latter profile is not accompanied by a continued long-term hippocampal neurogenic decrease. Hereby, we provide evidence that the neuroinflammatory response is a dynamic process that progresses in a milieu-dependent manner and does not necessarily lead to a neurogenic decrease, highlighting the complex interaction between the immune system and neurogenesis.

10.
11.
Cell Mol Neurobiol ; 38(8): 1517-1528, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30315388

ABSTRACT

Neurogenesis is a plastic event modulated by external cues. Systemic inflammation decreases neurogenesis in the dentate gyrus (DG) in part through the proliferative restrain of neural precursor cells (NPCs). To evaluate if inflammation affects the cell cycle progression of particular populations of NPCs, we treated young-adult mice with a single i.p. injection of saline or 1 mg/kg LPS. After 7 days, we analysed proliferation of new BrdU+/DCX+ cells through immunohistochemistry. We extracted the hippocampus and performed a neurosphere assay and a flow cytometric analysis to evaluate proliferation and to identify the phase of the cell cycle in specific populations of DG-derived NPCs. We show that the number of BrdU+/DCX+ cells diminishes in the LPS-treated group and that the number of primary neurospheres derived from LPS-injected animals is significantly reduced compared to the saline-injected group. Flow cytometry revealed that inflammation does not affect the total number of Type 1 BLBP+/TBR2- cells, while the total number of Type 2 intermediate precursor cells (IPCs) (TBR2+) from the LPS-treated group was increased. Cell cycle analysis shows a decrease in the total rate of NPCs in phases S, G2 and M in the LPS-treated group. The percentage of Type 1 BLBP+/TBR2- cells in each cell cycle phase was not different between groups, while there was a fewer number of Type 2 TBR2+ cells in S/G2/M phase. These results show that inflammation alters the appropriate cell cycle progression of Type 2 IPCs, which may contribute to the decrease in the birth rate of DG neurons.


Subject(s)
Hippocampus/pathology , Inflammation/pathology , Neural Stem Cells/pathology , Animals , Behavior, Animal/drug effects , Cell Count , Cell Cycle , Cell Proliferation , Cell Size , Doublecortin Domain Proteins , Doublecortin Protein , Inflammation/metabolism , Interleukin-6/metabolism , Lipopolysaccharides/administration & dosage , Male , Mice, Inbred C57BL , Microglia/metabolism , Microglia/pathology , Microtubule-Associated Proteins/metabolism , Motor Activity/drug effects , Neural Stem Cells/metabolism , Neuropeptides/metabolism , Spheroids, Cellular/metabolism , Weight Loss/drug effects
12.
Brain Struct Funct ; 223(6): 2859-2877, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29663136

ABSTRACT

The dentate gyrus (DG) is a neurogenic structure that exhibits functional and structural reorganization after injury. Neurogenesis and functional recovery occur after brain damage, and the possible relation between both processes is a matter of study. We explored whether neurogenesis and the activation of new neurons correlated with DG recovery over time. We induced a DG lesion in young adult rats through the intrahippocampal injection of kainic acid and analyzed functional recovery and the activation of new neurons after animals performed a contextual fear memory task (CFM) or a control spatial exploratory task. We analyzed the number of BrdU+ cells that co-localized with doublecortin (DCX) or with NeuN within the damaged DG and evaluated the number of cells in each population that were labelled with the activity marker c-fos after either task. At 10 days post-lesion (dpl), a region of the granular cell layer was devoid of cells, evidencing the damaged area, whereas at 30 dpl this region was significantly smaller. At 10 dpl, the number of BrdU+/DCX+/c-fos positive cells was increased compared to the sham-lesion group, but CFM was impaired. At 30 dpl, a significantly greater number of BrdU+/NeuN+/c-fos positive cells was observed than at 10 dpl, and activation correlated with CFM recovery. Performance in the spatial exploratory task induced marginal c-fos immunoreactivity in the BrdU+/NeuN+ population. We demonstrate that neurons born after the DG was damaged survive and are activated in a time- and task-dependent manner and that activation of new neurons occurs along functional recovery.


Subject(s)
Dentate Gyrus/injuries , Dentate Gyrus/pathology , Mental Recall/physiology , Neurogenesis/physiology , Neurons/physiology , Animals , Brain Mapping , Bromodeoxyuridine , Conditioning, Psychological/drug effects , Conditioning, Psychological/physiology , Dentate Gyrus/diagnostic imaging , Doublecortin Protein , Excitatory Amino Acid Agonists/toxicity , Exploratory Behavior/physiology , Fear/drug effects , Fear/physiology , Kainic Acid/toxicity , Male , Mental Recall/drug effects , Microscopy, Confocal , Nerve Tissue Proteins/metabolism , Neurogenesis/drug effects , Neurons/drug effects , Rats , Rats, Wistar , Spatial Behavior/drug effects , Spatial Behavior/physiology , Statistics, Nonparametric , Time Factors
13.
Rev Neurosci ; 29(1): 1-20, 2018 01 26.
Article in English | MEDLINE | ID: mdl-28873068

ABSTRACT

The dentate gyrus of the hippocampus is a plastic structure where adult neurogenesis constitutively occurs. Cell components of the neurogenic niche are source of paracrine as well as membrane-bound factors such as Notch, Bone Morphogenetic Proteins, Wnts, Sonic Hedgehog, cytokines, and growth factors that regulate adult hippocampal neurogenesis and cell fate decision. The integration and coordinated action of multiple extrinsic and intrinsic cues drive a continuous decision process: if adult neural stem cells remain quiescent or proliferate, if they take a neuronal or a glial lineage, and if new cells proliferate, undergo apoptotic death, or survive. The proper balance in the molecular milieu of this neurogenic niche leads to the production of neurons in a higher rate as that of astrocytes. But this rate changes in face of microenvironment modifications as those driven by physical exercise or with neuroinflammation. In this work, we first review the cellular and molecular components of the subgranular zone, focusing on the molecules, active signaling pathways and genetic programs that maintain quiescence, induce proliferation, or promote differentiation. We then summarize the evidence regarding the role of neuroinflammation and physical exercise in the modulation of adult hippocampal neurogenesis with emphasis on the activation of progression from adult neural stem cells to lineage-committed progenitors to their progeny mainly in murine models.


Subject(s)
Exercise , Hippocampus/cytology , Inflammation/pathology , Neural Stem Cells/physiology , Neurons/physiology , Animals , Cell Differentiation , Humans , Inflammation/chemically induced , Neurogenesis/physiology
14.
Cell Mol Neurobiol ; 37(7): 1311-1318, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28124209

ABSTRACT

Amyloid-ß protein (Aß) neurotoxicity occurs along with the reorganization of the actin-cytoskeleton through the activation of the Rho GTPase pathway. In addition to the classical mode of action of the non-steroidal anti-inflammatory drugs (NSAIDs), indomethacin, and ibuprofen have Rho-inhibiting effects. In order to evaluate the role of the Rho GTPase pathway on Aß-induced neuronal death and on neuronal morphological modifications in the actin cytoskeleton, we explored the role of NSAIDS in human-differentiated neuroblastoma cells exposed to Aß. We found that Aß induced neurite retraction and promoted the formation of different actin-dependent structures such as stress fibers, filopodia, lamellipodia, and ruffles. In the presence of Aß, both NSAIDs prevented neurite collapse and formation of stress fibers without affecting the formation of filopodia and lamellipodia. Similar results were obtained when the downstream effector, Rho kinase inhibitor Y27632, was applied in the presence of Aß. These results demonstrate the potential benefits of the Rho-inhibiting NSAIDs in reducing Aß-induced effects on neuronal structural alterations.


Subject(s)
Actins/metabolism , Amyloid beta-Peptides/toxicity , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cytoskeleton/enzymology , Peptide Fragments/toxicity , Signal Transduction/physiology , rho-Associated Kinases/physiology , Cell Line, Tumor , Cytoskeleton/drug effects , Cytoskeleton/pathology , Enzyme Inhibitors/pharmacology , Humans , Signal Transduction/drug effects , rho-Associated Kinases/antagonists & inhibitors
15.
Anat Rec (Hoboken) ; 300(2): 425-432, 2017 02.
Article in English | MEDLINE | ID: mdl-27860379

ABSTRACT

Kainic acid-induced (KA) hippocampal damage leads to neuronal death and further synaptic plasticity. Formation of aberrant as well as of functional connections after such procedure has been documented. However, the impact of such structural plasticity on cell activation along time after damage and in face of a behavioral demand has not been explored. We evaluated if the mRNA and protein levels of plasticity-related protein synaptophysin (Syp and SYP, respectively) and activity-regulated cytoskeleton-associated protein mRNA and protein levels (Arc and Arc, respectively) in the dentate gyrus were differentially modulated in time in response to a spatial-exploratory task after KA-induced hippocampal damage. In addition, we analyzed Arc+/NeuN+ immunopositive cells in the different experimental conditions. We infused KA intrahippocampally to young-adult rats and 10 or 30 days post-lesion (dpl) animals performed a hippocampus-activating spatial-exploratory task. Our results show that Syp mRNA levels significantly increase at 10dpl and return to control levels after 30dpl, whereas SYP protein levels are diminished at 10dpl, but significantly increase at 30dpl, as compared to 10dpl. Arc mRNA and protein levels are both increased at 30dpl as compared to sham. Also the number of NeuN+/Arc+ cells significantly increases at 30dpl in the group with a spatial-exploratory demand. These results provide information on the long-term modifications associated to structural plasticity and neuronal activation in the dentate gyrus after excitotoxic damage and in face of a spatial-exploratory behavior. Anat Rec, 300:425-432, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Exploratory Behavior/drug effects , Hippocampus/drug effects , Kainic Acid/toxicity , Neurons/drug effects , Spatial Behavior/drug effects , Animals , Hippocampus/metabolism , Male , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , Neurons/metabolism , Rats , Rats, Wistar , Synaptophysin/metabolism
16.
Front Cell Neurosci ; 9: 53, 2015.
Article in English | MEDLINE | ID: mdl-25745387

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder characterized clinically by the progressive decline of memory and cognition. Histopathologically, two main hallmarks have been identified in AD: amyloid-ß peptide extracellular neuritic plaques and neurofibrillary tangles formed by posttranslational modified tau protein. A definitive diagnosis can only be achieved after the post mortem verification of the histological mentioned alterations. Therefore, the development of biomarkers that allow an early diagnosis and/or predict disease progression is imperative. The prospect of a blood-based biomarker is possible with the finding of circulating microRNAs (miRNAs), a class of small non-coding RNAs of 22-25 nucleotides length that regulate mRNA translation rate. miRNAs travel through blood and recent studies performed in potential AD cases suggest the possibility of finding pathology-associated differences in circulating miRNA levels that may serve to assist in early diagnosis of the disease. However, these studies analyzed samples at a single time-point, limiting the use of miRNAs as biomarkers in AD progression. In this study we evaluated miRNA levels in plasma samples at different time-points of the evolution of an AD-like pathology in a transgenic mouse model of the disease (3xTg-AD). We performed multiplex qRT-PCR and compared the plasmatic levels of 84 miRNAs previously associated to central nervous system development and disease. No significant differences were detected between WT and transgenic young mice. However, age-related significant changes in miRNA abundance were observed for both WT and transgenic mice, and some of these were specific for the 3xTg-AD. In agreement, variations in the levels of particular miRNAs were identified between WT and transgenic old mice thus suggesting that the age-dependent evolution of the AD-like pathology, rather than the presence and expression of the transgenes, modifies the circulating miRNA levels in the 3xTg-AD mice.

17.
Rev Neurosci ; 26(3): 269-79, 2015.
Article in English | MEDLINE | ID: mdl-25781539

ABSTRACT

Hippocampal neurogenesis occurs in the adult brain in various species, including humans. A compelling question that arose when neurogenesis was accepted to occur in the adult dentate gyrus (DG) is whether new neurons become functionally relevant over time, which is key for interpreting their potential contributions to synaptic circuitry. The functional state of adult-born neurons has been evaluated using various methodological approaches, which have, in turn, yielded seemingly conflicting results regarding the timing of maturation and functional integration. Here, we review the contributions of different methodological approaches to addressing the maturation process of adult-born neurons and their functional state, discussing the contributions and limitations of each method. We aim to provide a framework for interpreting results based on the approaches currently used in neuroscience for evaluating functional integration. As shown by the experimental evidence, adult-born neurons are prone to respond from early stages, even when they are not yet fully integrated into circuits. The ongoing integration process for the newborn neurons is characterised by different features. However, they may contribute differently to the network depending on their maturation stage. When combined, the strategies used to date convey a comprehensive view of the functional development of newly born neurons while providing a framework for approaching the critical time at which new neurons become functionally integrated and influence brain function.


Subject(s)
Dentate Gyrus/physiology , Gene Expression Regulation, Developmental , Neurogenesis/physiology , Neurons/physiology , Adult , Dentate Gyrus/cytology , Hippocampus/cytology , Hippocampus/physiology , Humans , Neurogenesis/genetics , Neurons/metabolism
18.
Front Cell Neurosci ; 9: 21, 2015.
Article in English | MEDLINE | ID: mdl-25709567

ABSTRACT

Inorganic arsenic (iAs) is an important natural pollutant. Millions of individuals worldwide drink water with high levels of iAs. Chronic exposure to iAs has been associated with lower IQ and learning disabilities as well as memory impairment. iAs is methylated in tissues such as the brain generating mono and dimethylated species. iAs methylation requires cellular glutathione (GSH), which is the main antioxidant in the central nervous system (CNS). In humans, As species cross the placenta and are found in cord blood. A CD1 mouse model was used to investigate effects of gestational iAs exposure which can lead to oxidative damage, disrupted cysteine/glutamate transport and its putative impact in learning and memory. On postnatal days (PNDs) 1, 15 and 90, the expression of membrane transporters related to GSH synthesis and glutamate transport and toxicity, such as xCT, EAAC1, GLAST and GLT1, as well as LAT1, were analyzed. Also, the expression of the glutamate receptor N-methyl-D-aspartate (NMDAR) subunits NR2A and B as well as the presence of As species in cortex and hippocampus were investigated. On PND 90, an object location task was performed to associate exposure with memory impairment. Gestational exposure to iAs affected the expression of cysteine/glutamate transporters in cortex and hippocampus and induced a negative modulation of NMDAR NR2B subunit in the hippocampus. Behavioral tasks showed significant spatial memory impairment in males while the effect was marginal in females.

19.
Curr Alzheimer Res ; 11(9): 817-33, 2014.
Article in English | MEDLINE | ID: mdl-25274112

ABSTRACT

In view that several studies have shown a positive correlation between high cholesterol and an increase in the risk for developing Alzheimer's disease (AD) statins have been proposed as alternative drugs for its treatment and/or prevention. However, the potential benefits of statins remain controversial. Although they have lipid-lowering properties, statins also have pleiotropic effects that are unrelated to cholesterol reduction and have a wide range of biological implications whose consequences in brain function have not been fully characterized. In this work we analyze different studies that have reported both, beneficial and toxic effects for statins in the central nervous system (CNS), and we revise the literature that claims their potential for treating AD. First, we present an overview of the cholesterol metabolism and its regulation in the brain in order to provide the framework for understanding the pathological association between altered cholesterol and AD. Then, we describe the cholesterol-lowering and pleiotropic properties of statins that have been reported in vivo and in in vitro models. We conclude that the effects of statins in the brain are broad and complex and that their use for treating several diseases including AD should be carefully analyzed given their multiple and broad effects.


Subject(s)
Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Brain/drug effects , Brain/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Neuroprotective Agents/therapeutic use , Animals , Cholesterol/biosynthesis , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/toxicity , Neuroprotective Agents/toxicity
20.
Brain Res ; 1584: 80-93, 2014 Oct 10.
Article in English | MEDLINE | ID: mdl-24355599

ABSTRACT

MicroRNAs (miRNAs) are small non-coding RNAs that control a wide range of functions in the cell. They act as post-transcriptional gene regulators throughout in development and in adulthood, although recent evidence suggests their potential role in the onset and development of various diseases and neuropathologies. In neurons miRNAs seem to play a key role as regulators of synaptic function. Synapses are vulnerable structures in neurodegenerative diseases. In particular, synaptic loss has been described as an early event in the pathogenesis of Alzheimer's Disease (AD). MicroRNA-mediated gene silencing represents a candidate event for the repression of specific mRNAs and protein synthesis that could account for synaptic dysfunction. In this work, we review the participation of miRNAs in synaptic function and consider their possible role in synaptic alterations in AD. First we review the biogenesis of miRNAs and their role as post-transcriptional regulators. Then we discuss recently published data on the distribution of miRNAs in the brain as well as their role in dynamic regulation at the synapse. In the second part, we briefly introduce the reader to AD, focusing on synaptic alterations in the progression of the pathology. Then we discuss possible implications of miRNAs in the associated synaptic dysfunction.


Subject(s)
Alzheimer Disease/genetics , Brain/metabolism , MicroRNAs/analysis , MicroRNAs/genetics , Synapses/metabolism , Alzheimer Disease/pathology , Humans , MicroRNAs/metabolism , Neuronal Plasticity/genetics , RNA Interference , RNA Processing, Post-Transcriptional , Signal Transduction/genetics , Synapses/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...