Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Immunol ; 20(3): 362-372, 2019 03.
Article in English | MEDLINE | ID: mdl-30742080

ABSTRACT

The present vaccine against influenza virus has the inevitable risk of antigenic discordance between the vaccine and the circulating strains, which diminishes vaccine efficacy. This necessitates new approaches that provide broader protection against influenza. Here we designed a vaccine using the hypervariable receptor-binding domain (RBD) of viral hemagglutinin displayed on a nanoparticle (np) able to elicit antibody responses that neutralize H1N1 influenza viruses spanning over 90 years. Co-display of RBDs from multiple strains across time, so that the adjacent RBDs are heterotypic, provides an avidity advantage to cross-reactive B cells. Immunization with the mosaic RBD-np elicited broader antibody responses than those induced by an admixture of nanoparticles encompassing the same set of RBDs as separate homotypic arrays. Furthermore, we identified a broadly neutralizing monoclonal antibody in a mouse immunized with mosaic RBD-np. The mosaic antigen array signifies a unique approach that subverts monotypic immunodominance and allows otherwise subdominant cross-reactive B cell responses to emerge.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/immunology , Nanoparticles/chemistry , Orthomyxoviridae Infections/immunology , Animals , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , B-Lymphocytes/virology , Cross Reactions/drug effects , Cross Reactions/immunology , Female , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Humans , Immunization , Influenza A Virus, H1N1 Subtype/metabolism , Influenza A Virus, H1N1 Subtype/physiology , Influenza Vaccines/administration & dosage , Influenza Vaccines/chemistry , Influenza, Human/prevention & control , Influenza, Human/virology , Mice, Inbred BALB C , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/virology
3.
NPJ Vaccines ; 2: 15, 2017.
Article in English | MEDLINE | ID: mdl-29263871

ABSTRACT

A novel avian influenza subtype, A/H7N9, emerged in 2013 and represents a public health threat with pandemic potential. We have previously shown that DNA vaccine priming increases the magnitude and quality of antibody responses to H5N1 monovalent inactivated boost. We now report the safety and immunogenicity of a H7 DNA-H7N9 monovalent inactivated vaccine prime-boost regimen. In this Phase 1, open label, randomized clinical trial, we evaluated three H7N9 vaccination regimens in healthy adults, with a prime-boost interval of 16 weeks. Group 1 received H7 DNA vaccine prime and H7N9 monovalent inactivated vaccine boost. Group 2 received H7 DNA and H7N9 monovalent inactivated vaccine as a prime and H7N9 monovalent inactivated vaccine as a boost. Group 3 received H7N9 monovalent inactivated vaccine in a homologous prime-boost regimen. Overall, 30 individuals between 20 to 60 years old enrolled and 28 completed both vaccinations. All injections were well tolerated with no serious adverse events. 2 weeks post-boost, 50% of Group 1 and 33% of Group 2 achieved a HAI titer ≥1:40 compared with 11% of Group 3. Also, at least a fourfold increase in neutralizing antibody responses was seen in 90% of Group 1, 100% of Group 2, and 78% of Group 3 subjects. Peak neutralizing antibody geometric mean titers were significantly greater for Group 1 (GMT = 440.61, p < 0.05) and Group 2 (GMT = 331, p = 0.02) when compared with Group 3 (GMT = 86.11). A novel H7 DNA vaccine was safe, well-tolerated, and immunogenic when boosted with H7N9 monovalent inactivated vaccine, while priming for higher HAI and neutralizing antibody titers than H7N9 monovalent inactivated vaccine alone.

4.
Proc Natl Acad Sci U S A ; 114(10): 2711-2716, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28223498

ABSTRACT

A live-attenuated malaria vaccine, Plasmodium falciparum sporozoite vaccine (PfSPZ Vaccine), confers sterile protection against controlled human malaria infection (CHMI) with Plasmodium falciparum (Pf) parasites homologous to the vaccine strain up to 14 mo after final vaccination. No injectable malaria vaccine has demonstrated long-term protection against CHMI using Pf parasites heterologous to the vaccine strain. Here, we conducted an open-label trial with PfSPZ Vaccine at a dose of 9.0 × 105 PfSPZ administered i.v. three times at 8-wk intervals to 15 malaria-naive adults. After CHMI with homologous Pf parasites 19 wk after final immunization, nine (64%) of 14 (95% CI, 35-87%) vaccinated volunteers remained without parasitemia compared with none of six nonvaccinated controls (P = 0.012). Of the nine nonparasitemic subjects, six underwent repeat CHMI with heterologous Pf7G8 parasites 33 wk after final immunization. Five (83%) of six (95% CI, 36-99%) remained without parasitemia compared with none of six nonvaccinated controls. PfSPZ-specific T-cell and antibody responses were detected in all vaccine recipients. Cytokine production by T cells from vaccinated subjects after in vitro stimulation with homologous (NF54) or heterologous (7G8) PfSPZ were highly correlated. Interestingly, PfSPZ-specific T-cell responses in the blood peaked after the first immunization and were not enhanced by subsequent immunizations. Collectively, these data suggest durable protection against homologous and heterologous Pf parasites can be achieved with PfSPZ Vaccine. Ongoing studies will determine whether protective efficacy can be enhanced by additional alterations in the vaccine dose and number of immunizations.


Subject(s)
Malaria Vaccines/administration & dosage , Malaria, Falciparum/prevention & control , Plasmodium falciparum/drug effects , Vaccines, Attenuated/administration & dosage , Adolescent , Adult , Female , Healthy Volunteers , Humans , Malaria Vaccines/adverse effects , Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Male , Middle Aged , Plasmodium falciparum/pathogenicity , Sporozoites/immunology , Sporozoites/pathogenicity , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/parasitology , Vaccines, Attenuated/adverse effects , Vaccines, Attenuated/immunology
6.
Nat Med ; 22(6): 614-23, 2016 06.
Article in English | MEDLINE | ID: mdl-27158907

ABSTRACT

An attenuated Plasmodium falciparum (Pf) sporozoite (SPZ) vaccine, PfSPZ Vaccine, is highly protective against controlled human malaria infection (CHMI) 3 weeks after immunization, but the durability of protection is unknown. We assessed how vaccine dosage, regimen, and route of administration affected durable protection in malaria-naive adults. After four intravenous immunizations with 2.7 × 10(5) PfSPZ, 6/11 (55%) vaccinated subjects remained without parasitemia following CHMI 21 weeks after immunization. Five non-parasitemic subjects from this dosage group underwent repeat CHMI at 59 weeks, and none developed parasitemia. Although Pf-specific serum antibody levels correlated with protection up to 21-25 weeks after immunization, antibody levels waned substantially by 59 weeks. Pf-specific T cell responses also declined in blood by 59 weeks. To determine whether T cell responses in blood reflected responses in liver, we vaccinated nonhuman primates with PfSPZ Vaccine. Pf-specific interferon-γ-producing CD8 T cells were present at ∼100-fold higher frequencies in liver than in blood. Our findings suggest that PfSPZ Vaccine conferred durable protection to malaria through long-lived tissue-resident T cells and that administration of higher doses may further enhance protection.


Subject(s)
Antibodies, Protozoan/immunology , CD8-Positive T-Lymphocytes/immunology , Immunogenicity, Vaccine/immunology , Liver/immunology , Malaria Vaccines/therapeutic use , Malaria, Falciparum/prevention & control , Parasitemia/prevention & control , Plasmodium falciparum/immunology , Administration, Intravenous , Adolescent , Adult , Animals , Enzyme-Linked Immunosorbent Assay , Female , Healthy Volunteers , Humans , Immunoglobulin G/immunology , Interferon-gamma/immunology , Liver/cytology , Macaca mulatta , Malaria Vaccines/immunology , Male , Middle Aged , Parasitemia/immunology , Sporozoites/immunology , T-Lymphocytes/immunology , Young Adult
7.
Science ; 341(6152): 1359-65, 2013 Sep 20.
Article in English | MEDLINE | ID: mdl-23929949

ABSTRACT

Consistent, high-level, vaccine-induced protection against human malaria has only been achieved by inoculation of Plasmodium falciparum (Pf) sporozoites (SPZ) by mosquito bites. We report that the PfSPZ Vaccine--composed of attenuated, aseptic, purified, cryopreserved PfSPZ--was safe and well tolerated when administered four to six times intravenously (IV) to 40 adults. Zero of six subjects receiving five doses and three of nine subjects receiving four doses of 1.35 × 10(5) PfSPZ Vaccine and five of six nonvaccinated controls developed malaria after controlled human malaria infection (P = 0.015 in the five-dose group and P = 0.028 for overall, both versus controls). PfSPZ-specific antibody and T cell responses were dose-dependent. These data indicate that there is a dose-dependent immunological threshold for establishing high-level protection against malaria that can be achieved with IV administration of a vaccine that is safe and meets regulatory standards.


Subject(s)
Malaria Vaccines/administration & dosage , Malaria Vaccines/immunology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/immunology , Administration, Intravenous , Adult , Animals , Cytokines/immunology , Female , Humans , Immunity, Cellular , Malaria Vaccines/adverse effects , Male , Mice , Sporozoites/immunology , T-Lymphocytes/immunology , Vaccination/adverse effects , Vaccination/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...