Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Acta Trop ; 230: 106395, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35278367

ABSTRACT

Piperine is an alkaloid extracted from the seed of Piper spp., which has demonstrated a larvicidal effect against Ae. aegypti. The incorporation of piperine into nanostructured systems can increase the effectiveness of this natural product in the control of Ae. aegypti larvae. In this study, we evaluated the effectiveness of piperine loaded or not into two nanostructured systems (named NS-A and NS-B) prepared by the nanoprecipitation method. The Ae. aegypti larvae were exposed to different concentrations of piperine loaded or not (2 to 16 ppm) and the mortality was investigated after 24, 48, and 72 hours. The nanostructures prepared were spherical in shape with narrow size distribution and great encapsulation efficiency. The lethal concentration 50 (LC50) for non-loaded piperine were 13.015 ppm (24 hours), 8.098 ppm (48 hours), and 7.248 ppm (72 hours). The LC50 values found for NS-A were 35.378 ppm (24 hours), 12.091 ppm (48 hours), and 8.011 ppm (72 hours), whereas the values found for NS-B were 21.267 ppm (24 hours), 12.091 ppm (48 hours), and 8.011 ppm (72 hours). Collectively, these findings suggested that non-loaded piperine caused higher larval mortality in the first hours of exposure while the nanostructured systems promoted the slow release of piperine and thereby increased the larvicidal activity over time. Therefore, loading piperine into nanostructured systems might be an effective tool to improve the larval control of vector Ae. aegypti.


Subject(s)
Aedes , Alkaloids , Insecticides , Nanostructures , Alkaloids/pharmacology , Animals , Benzodioxoles , Insecticides/pharmacology , Larva , Mosquito Vectors , Piperidines , Plant Extracts/chemistry , Polymers , Polyunsaturated Alkamides
2.
Int J Biol Macromol ; 194: 32-41, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34863831

ABSTRACT

Banana (Musa acuminata) pseudostem cellulose was extracted and acetylated (CA) to prepare membranes with potential use as bio-packages. The CA membrane was embedded by Butia seed (CA-BS) or Butia pulp (CA-BP) extracts obtained from Butia catarinenses (Butia). The produced CA, CA-BS, and CA-BP membranes were evaluated for their physical-chemical, mechanical, thermal, and antibacterial properties. The process for obtaining the cellulose yielded a material with about 92.17% cellulose (DS = 2.85). The purity, cellulose degree acetylation, and the incorporation of Butia extracts into the membranes were confirmed by FTIR. The CA-BS and CA-BP membranes showed a smaller contact angle and higher swelling ratio than the CA membrane. Furthermore, Butia seed or pulp extracts reduced the elastic modulus and deformation at break compared to the CA membrane. The DSC analysis suggested the compatibility between sections and the CA matrix, whereas the TGA analysis confirmed the thermal stability of the membranes. Moreover, less than 1% of the Butia seed and pulp extracts were put into a food simulant media from the membrane. Finally, the CA-BS and CA-BP membranes could inhibit the growth of Staphylococcus aureus and Escherichia coli on their surface, confirming the potential use of these membranes as bio-packaging for food preservation.


Subject(s)
Cellulose/analogs & derivatives , Musa/chemistry , Plant Extracts/chemistry , Plant Stems/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Cellulose/chemistry , Chemical Phenomena , Mechanical Phenomena , Membranes, Artificial , Product Packaging , Spectrum Analysis
3.
Mater Sci Eng C Mater Biol Appl ; 120: 111392, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33545808

ABSTRACT

In this study, we performed two experiments. In the first experiment, the objective was to link gold nanoparticles (GNPs) with sodium diclofenac and/or soy lecithin and to determine their concentration in tissues and their toxicity using hepatic and renal analyzes in mice to evaluate their safety as therapeutic agents in the subsequent treatment of obesity. In the second experiment, we evaluated the effect of GNPs on inflammatory and biochemical parameters in obese mice. In the first experiment, we synthesized and characterized 18 nm GNPs that were administered intraperitoneally in isolation or in association with sodium diclofenac and/or soy lecithin in mice once daily for 1 or 14 days. Twenty-four hours after the single or final administration, the animals were euthanized, following which the tissues were removed for evaluating the concentration of GNPs, and serum samples were collected for hepatic and renal analysis. Hepatic damage was evaluated based on the levels of alanine aminotransferase (ALT), whereas renal damage was evaluated based on creatinine levels. A higher concentration of GNPs was detected in the tissues upon administration for 14 days, and there were no signs of hepatic or renal damage. In the second experiment, the mice were used as animal models of obesity and were fed a high-fat diet (obese group) and control diet (control group). After eight weeks of high-fat diet administration, the mice were treated with saline or with GNPs (average size of 18 nm) at a concentration of 70 mg/L (70 mg/kg) once a day, for 14 days, for 10 weeks. Body weight and food intake were measured frequently. After the experiment ended, the animals were euthanized, serum samples were collected for glucose and lipid profile analysis, the mesenteric fat content was weighed, and the brains were removed for inflammatory and biochemical analysis. In obese mice, although GNP administration did not reduce body and mesenteric fat weight, it reduced food intake. The glucose levels were reversed upon administration of GNPs, whereas the lipid profile was not altered in any of the groups. GNPs exerted a beneficial effect on inflammation and oxidative stress parameters, without reverting mitochondrial dysfunction. Our results indicate that the intraperitoneal administration of GNPs for 14 days results in a significant GNP concentration in adipose tissues, which could be an interesting finding for the treatment of inflammation associated with obesity. Based on the efficacy of GNPs in reducing dietary intake, inflammation, and oxidative stress, they can be considered potential alternative agents for the treatment of obesity.


Subject(s)
Gold , Metal Nanoparticles , Animals , Brain , Gold/metabolism , Liver/metabolism , Metal Nanoparticles/toxicity , Mice , Obesity/drug therapy , Oxidative Stress
4.
Carbohydr Polym ; 206: 362-370, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30553333

ABSTRACT

A smart wound dressing based on carrageenan (κC), locust bean gum (LBG), and cranberry extract (CB) for monitoring bacterial wound infections was developed and characterized using UV-vis spectroscopy, FT-IR, and SEM. The mechanical, swelling, cytotoxic and pH sensor properties were also investigated. UV-vis spectra demonstrated that the obtained κC:LBG:CB hydrogel film exhibited a visible change of colors as it was immersed in PBS solution pH 5.0, 7.3 and 9.0. The spectra of FT-IR suggested that chemical interactions had occurred between κC and CB extract. The obtained κC:LBG:CB hydrogel film exhibited adequate mechanical properties and a swelling behavior dependent on pH. Cytotoxicity tests indicated that κC:LBG:CB hydrogel film had dose-dependent cytotoxicity against NIH 3T3 fibroblast cells. The in vitro studies using Staphylococcus aureus and Pseudomonas aeruginosa demonstrated that the color changes of the κC:LBG:CB hydrogel film could be observed by naked eyes, confirming the potential use of the obtained hydrogel film as a visual system for monitoring bacterial wound infections.


Subject(s)
Bacterial Infections/diagnosis , Bandages , Hydrogels/chemistry , Indicators and Reagents/pharmacology , Plant Extracts/pharmacology , Wound Infection/diagnosis , Animals , Anthocyanins/chemistry , Anthocyanins/pharmacology , Anthocyanins/toxicity , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/toxicity , Carrageenan/chemistry , Carrageenan/toxicity , Color , Elastic Modulus , Galactans/chemistry , Galactans/toxicity , Hydrogels/toxicity , Hydrogen-Ion Concentration , Indicators and Reagents/chemistry , Indicators and Reagents/toxicity , Mannans/chemistry , Mannans/toxicity , Mice , NIH 3T3 Cells , Plant Extracts/chemistry , Plant Extracts/toxicity , Plant Gums/chemistry , Plant Gums/toxicity , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects , Tensile Strength , Vaccinium macrocarpon/chemistry
5.
Int J Biol Macromol ; 113: 51-58, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29471089

ABSTRACT

This manuscript was focused on introducing a facile, green and scalable method to produce kappa-carrageenan (κC) hydrogel membranes containing in situ synthesized silver nanoparticles (AgNPs). In a typical protocol, κC hydrogels were obtained by heating (sol phase), followed by cooling (gel phase) the polysaccharide solution, which enabled the simultaneous synthesis of AgNPs during the heating time. The as synthesized AgNPs were characterized spectrophotometrically, and by dynamic light scattering and transmission electron microscopy. The swelling properties at different pH and the antimicrobial activity of κC-AgNP hydrogel were investigated. AgNPs were mostly spherical in shape, crystalline in nature and measuring ca. 27nm in diameter. The in situ synthesis of AgNPs changed the swelling properties of κC hydrogel and also reduces its viscosity and gelling temperature. The AgNPs were continuously released from κC hydrogel for up to 48h in a concentration sufficient to prevent the bacterial growth as confirmed by antimicrobial tests. The simplicity involved in the AgNPs synthesis combined to the good spreadability of κC hydrogel makes this method suitable for scale-up to manufacturing quantities of wound dressing.


Subject(s)
Bandages , Carrageenan/chemistry , Hydrogels/chemistry , Metal Nanoparticles/chemistry , Silver/chemistry , Wound Healing , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bandages/microbiology , Green Chemistry Technology , Hydrogen-Ion Concentration , Microbial Sensitivity Tests , Particle Size
6.
Mater Sci Eng C Mater Biol Appl ; 76: 365-373, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28482539

ABSTRACT

This paper discusses the feasibility of using membranes based on cellulose acetate butyrate/poly(caprolactone)triol loaded with doxycycline for guided bone regeneration. Those membranes were obtained by solvent casting varying the cellulose acetate butyrate: poly(caprolactone)triol:doxycycline (CAB:PCL-T:DOX) mass ratios and characterized by scanning electron microscopy, differential scanning calorimetry, dynamical mechanical analysis, swelling and weight loss, drug release, in vitro antimicrobial activity and in vivo inflammatory response. Neat CAB and CAB:PCL-T:DOX membranes exhibited inner porous structure, which has a pore-size reduced with increasing of the PCL-T ratio. DSC results demonstrated that the molecular dispersion of the DOX into the CAB:PCL-T membrane was conditioned by PCL-T amount. Elastic modulus reduced noticeably with increased of the PCL-T ratio in the membrane from 2 to 3, while the strain at failure showed an increase of ca. 10-fold on the same condition. The DOX release mechanism from the membranes was found to be Fickian or quasi-Fickian diffusion. Membranes assessed immediately after the preparation, and even as the membranes immersed in synthetic saliva during 7 days, demonstrated significant inhibition in the growth of Staphylococcus aureus and Escherichia coli. Subcutaneous implant test on rat in vivo showed that the CAB:PCL-T:DOX membrane (7:3:1) did not trigger chronic inflammatory responses. These results suggest the feasibility in applying the CAB:PCL-T:DOX membrane as a barrier for guided bone regeneration.


Subject(s)
Bone Regeneration , Animals , Butyrates , Caproates , Cellulose/analogs & derivatives , Doxycycline , Lactones , Polyesters , Rats , Staphylococcus aureus
7.
Rev Soc Bras Med Trop ; 49(6): 687-692, 2016.
Article in English | MEDLINE | ID: mdl-28001214

ABSTRACT

INTRODUCTION:: The significant increase in dengue, Zika, and chikungunya and the resistance of the Aedes aegypti mosquito to major insecticides emphasize the importance of studying alternatives to control this vector. The aim of this study was to develop a controlled-release device containing Piper nigrum extract and to study its larvicidal activity against Aedes aegypti. METHODS:: Piper nigrum extract was produced by maceration, standardized in piperine, and incorporated into cotton threads, which were inserted into hydrogel cylinders manufactured by the extrusion of carrageenan and carob. The piperine content of the extract and thread reservoirs was quantified by chromatography. The release profile from the device was assessed in aqueous medium and the larvicidal and residual activities of the standardized extract as well as of the controlled-release device were examined in Aedes aegypti larvae. RESULTS: The standardized extract contained 580mg/g of piperine and an LC50 value of 5.35ppm (24h) and the 3 cm thread reservoirs contained 13.83 ± 1.81mg of piperine. The device showed zero-order release of piperine for 16 days. The P. nigrum extract (25ppm) showed maximum residual larvicidal activity for 10 days, decreasing progressively thereafter. The device had a residual larvicidal activity for up to 37 days. CONCLUSIONS:: The device provided controlled release of Piper nigrum extract with residual activity for 37 days. The device is easy to manufacture and may represent an effective alternative for the control of Aedes aegypti larvae in small water containers.


Subject(s)
Aedes/drug effects , Insect Vectors/drug effects , Insecticides/administration & dosage , Piper nigrum/chemistry , Plant Extracts/administration & dosage , Animals , Delayed-Action Preparations , Dengue/transmission , Drug Delivery Systems , Insecticides/isolation & purification , Larva/drug effects , Lethal Dose 50
8.
Rev. Soc. Bras. Med. Trop ; 49(6): 687-692, Dec. 2016. tab, graf
Article in English | LILACS | ID: biblio-829677

ABSTRACT

Abstract: INTRODUCTION: The significant increase in dengue, Zika, and chikungunya and the resistance of the Aedes aegypti mosquito to major insecticides emphasize the importance of studying alternatives to control this vector. The aim of this study was to develop a controlled-release device containing Piper nigrum extract and to study its larvicidal activity against Aedes aegypti. METHODS: Piper nigrum extract was produced by maceration, standardized in piperine, and incorporated into cotton threads, which were inserted into hydrogel cylinders manufactured by the extrusion of carrageenan and carob. The piperine content of the extract and thread reservoirs was quantified by chromatography. The release profile from the device was assessed in aqueous medium and the larvicidal and residual activities of the standardized extract as well as of the controlled-release device were examined in Aedes aegypti larvae. RESULTS The standardized extract contained 580mg/g of piperine and an LC50 value of 5.35ppm (24h) and the 3 cm thread reservoirs contained 13.83 ± 1.81mg of piperine. The device showed zero-order release of piperine for 16 days. The P. nigrum extract (25ppm) showed maximum residual larvicidal activity for 10 days, decreasing progressively thereafter. The device had a residual larvicidal activity for up to 37 days. CONCLUSIONS: The device provided controlled release of Piper nigrum extract with residual activity for 37 days. The device is easy to manufacture and may represent an effective alternative for the control of Aedes aegypti larvae in small water containers.


Subject(s)
Animals , Plant Extracts/administration & dosage , Aedes/drug effects , Piper nigrum/chemistry , Insect Vectors/drug effects , Insecticides/administration & dosage , Drug Delivery Systems , Delayed-Action Preparations , Dengue/transmission , Insecticides/isolation & purification , Larva/drug effects , Lethal Dose 50
9.
Mater Sci Eng C Mater Biol Appl ; 44: 225-33, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25280700

ABSTRACT

The production and evaluation of cornstarch/cellulose acetate/silver sulfadiazine extrudate matrices are reported herein. The matrices were melt extruded under nine different conditions, altering the temperature and the screw speed values. The surface morphology of the matrices was examined by scanning electron microscopy. The micrographs revealed the presence of non-melted silver sulfadiazine microparticles in the matrices extruded at lower temperature and screw speed values. The thermal properties were evaluated and the results for both the biopolymer and the drug indicated no thermal degradation during the melt extrusion process. The differential scanning analysis of the extrudate matrices showed a shift to lower temperatures for the silver sulfadiazine melting point compared with the non-extruded drug. The starch/cellulose acetate matrices containing silver sulfadiazine demonstrated significant inhibition of the growth of Pseudomonas aeruginosa and Staphylococcus aureus. In vivo inflammatory response tests showed that the extrudate matrices, with or without silver sulfadiazine, did not trigger chronic inflammatory processes.


Subject(s)
Cellulose/analogs & derivatives , Silver Sulfadiazine/chemistry , Starch/chemistry , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Cellulose/chemistry , Chromatography, High Pressure Liquid , Interleukin-10/blood , Interleukin-6/blood , Pseudomonas aeruginosa/drug effects , Rats , Rats, Wistar , Silver Sulfadiazine/pharmacology , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus/drug effects
10.
Parasitol Res ; 110(3): 1173-8, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21850452

ABSTRACT

Studies have demonstrated the potential of Copaifera sp. oleoresin to control Aedes aegypti proliferation. However, the low water solubility is a factor that limits its applicability. Thus, the micro- or nanoencapsulation could be an alternative to allow its use in larval breeding places. The purpose of this study was to evaluate if achievable lethal concentrations could be obtained from Copaifera sp. oleoresin incorporated into polymers (synthetic or natural) and, mainly, if it can be sustained in the residual activity compared to the pure oil when tested against the A. aegypti larvae. Microcapsules were prepared by the process of emulsification/precipitation using the polymers of cellulose acetate (CA) and poly(ethylene-co-methyl acrylate) (PEMA), yielding four types of microcapsules: MicPEMA1 and MicPEMA2, and MicCA1 and MicCA2. When using only Copaifera sp. oleoresin, the larvicidal activity was observed at concentrations of LC50 = 48 mg/L and LC99 = 149 mg/L. For MicPEMA1, the LC50 and LC99 were 78 and 389 mg/L, respectively. Using MicPEMA2, the LC50 was 120 mg/L and LC99 > 500 mg/L. For microcapsules MicCA1 and MicCA2, the LC50 and LC99 were 42, 164, 140, and 398 mg/L, respectively. For a dose of 150 mg/L of pure oleoresin, the residual activity remained above 20% for 10 days, while the dose of 400 mg/L remained above 40% for 21 days. The MicPEMA1 microcapsules showed a loss in residual activity up to the first day; however, it remained in activity above 40% for 17 days. The microcapsules of MicCA1 showed similar LC50 of pure oil with 150 mg/L.


Subject(s)
Aedes/drug effects , Capsules/pharmacology , Fabaceae/chemistry , Insecticides/pharmacology , Plant Extracts/pharmacology , Acrylic Resins , Aedes/growth & development , Animals , Capsules/chemistry , Insecticides/chemistry , Larva/drug effects , Lethal Dose 50 , Plant Extracts/chemistry , Polymers/chemistry , Polymers/pharmacology
11.
Braz. j. pharm. sci ; 46(3): 491-497, July-Sept. 2010. ilus, tab
Article in English | LILACS | ID: lil-564915

ABSTRACT

The aim of this study was to investigate the mechanical properties of starch/glycerol/Melissa officinalis, a topical drug delivery system for labial herpes treatment. Four films were prepared with different concentrations of starch, glycerol, and Melissa officinalis extract. The results revealed that increasing the glycerol concentration in the film reduced elasticity modulus and tensile strength, exhibiting a plasticizing effect. The increase in free volume resulted in increased release of hydroxycinnamic derivatives expressed as rosmarinic acid.


O objetivo deste trabalho foi estudar as propriedades mecânicas e o mecanismo de liberação de um sistema tópico de liberação prolongada para o tratamento do Herpes labial a partir de filmes de amido/glicerol/extrato de Melissa officinalis, planta com comprovada atividade antiviral. Foram obtidos quatro filmes poliméricos com diferentes concentrações de amido, glicerol e extrato de Melissa officinalis os quais foram caracterizados mecanicamente e determinado o perfil de liberação de derivados hidroxicinâmicos. Os resultados demonstraram que o aumento da concentração de glicerol no filme produz uma redução no módulo de elasticidade e na tensão de deformação como conseqüência do efeito plastificante. O aumento no volume livre do polímero resultou em aumento da liberação dos derivados hidroxicinâmicos expressos como ácido rosmarínico.


Subject(s)
Starch/pharmacology , Coumaric Acids , Mechanics , Melissa/therapeutic use , Nutrient Film Technique , Delayed-Action Preparations/pharmacology , Herpes Labialis , Therapeutics
SELECTION OF CITATIONS
SEARCH DETAIL
...