Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Reprod Biomed Soc Online ; 10: 37-45, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32577540

ABSTRACT

This study aimed to investigate the cost-effectiveness of preimplantation genetic diagnosis (PGD) for the reproductive choices of patients with heritable retinoblastoma. The study modelled the costs of three cycles of in-vitro fertilization (IVF) and PGD across all uptake rates of PGD, number of children affected with retinoblastoma at each uptake rate and the estimated quality-adjusted life years (QALYs) gained. Cost-effectiveness analysis was conducted from the Australian public healthcare perspective. The intervention was the use of three cycles (one fresh and two frozen) of IVF and PGD with the aim of live births unaffected by the retinoblastoma phenotype. Compared with the standard care pathway (i.e. natural pregnancy), IVF and PGD resulted in a cost-saving to 18 years of age of AUD$2,747,294 for a base case of 100 couples with an uptake rate of 50%. IVF and PGD resulted in fewer affected (n = 56) and unaffected (n = 78) live births compared with standard care (71 affected and 83 unaffected live births), and an additional 0.03 QALYs per live birth. This modelling suggests that the use of IVF and PGD to achieve an unaffected child for patients with heritable retinoblastoma resulted in an overall cost-saving. There was an increase in QALYs per baby across all uptake rates. However, in total, fewer babies were born following the IVF and PGD pathway.

2.
Tree Physiol ; 34(10): 1047-55, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25413023

ABSTRACT

Total daily water use is a key factor influencing the growth of many terrestrial plants, and reflects both day-time and nocturnal water fluxes. However, while nocturnal sap flow (En) and stomatal conductance (gs,n) have been reported across a range of species, ecosystems and microclimatic conditions, the regulation of these fluxes remains poorly understood. Here, we present a framework describing the role of abiotic and biotic factors in regulating En and gs,n highlighting recent developments in this field. Across ecosystems, En and gs,n generally increased with increasing soil water content and vapor pressure deficit, but the interactive effects of these factors and the potential roles of wind speed and other abiotic factors remain unclear. On average, gs,n and En are higher in broad-leaved compared with needle-leaved plants, in C3 compared with C4 plants, and in tropical compared with temperate species. We discuss the impacts of leaf age, elevated [CO2] and refilling of capacitance on night-time water loss, and how nocturnal gs,n may be included in vegetation models. Younger leaves may have higher gs,n than older leaves. Embolism refilling and recharge of capacitance may affect sap flow such that total plant water loss at night may be less than estimated solely from En measurements. Our estimates of gs,n for typical plant functional types, based on the published literature, suggest that nocturnal water loss may be a significant fraction (10-25%) of total daily water loss. Counter-intuitively, elevated [CO2] may increase nocturnal water loss. Assumptions in process-based ecophysiological models and dynamic global vegetation models that gs is zero when solar radiation is zero are likely to be incorrect. Consequently, failure to adequately consider nocturnal water loss may lead to substantial under-estimation of total plant water use and inaccurate estimation of ecosystem level water balance.


Subject(s)
Plant Transpiration/physiology , Trees/physiology , Carbon Dioxide , Ecosystem , Models, Biological , Plant Leaves/physiology , Soil , Water , Wind
SELECTION OF CITATIONS
SEARCH DETAIL
...