Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 708, 2022 02 04.
Article in English | MEDLINE | ID: mdl-35121752

ABSTRACT

Agroforestry systems have the potential to sequester carbon and offer numerous benefits to rural communities, but their capacity to offer valuable cooling services has not been quantified on continental scales. Here, we find that trees in pasturelands ("silvopasture") across Latin America and Africa can offer substantial cooling benefits. These cooling benefits increase linearly by -0.32 °C to -2.4 °C per 10 metric tons of woody carbon per hectare, and importantly do not depend on the spatial extent of the silvopasture systems. Thus, even smallholders can reap important cooling services from intensifying their silvopasture practices. We then map where realistic (but ambitious) silvopasture expansion could counteract a substantial fraction of the local projected warming in 2050 due to climate change. Our findings indicate where and to what extent silvopasture systems can counteract local temperature increases from global climate change and help vulnerable communities adapt to a warming world.

2.
Lancet Planet Health ; 5(12): e882-e892, 2021 12.
Article in English | MEDLINE | ID: mdl-34774222

ABSTRACT

BACKGROUND: Previous studies focusing on urban, industrialised regions have found that excess heat exposure can increase all-cause mortality, heat-related illnesses, and occupational injuries. However, little research has examined how deforestation and climate change can adversely affect work conditions and population health in low latitude, industrialising countries. METHODS: For this modelling study we used data at 1 km2 resolution to compare forest cover and temperature conditions in the Berau regency, Indonesia, between 2002 and 2018. We used spatially explicit satellite, climate model, and population data to estimate the effects of global warming, between 2002 and 2018 and after applying 1·0°C, 1·5°C, and 2·0°C of global warming to 2018 temperatures, on all-cause mortality and unsafe work conditions in the Berau regency, Indonesia. FINDINGS: Between 2002 and 2018, 4375 km2 of forested land in Berau was cleared, corresponding to approximately 17% of the entire regency. Deforestation increased mean daily maximum temperatures by 0·95°C (95% CI 0·97-0·92; p<0·0001). Mean daily temperatures increased by a population-weighted 0·86°C, accounting for an estimated 7·3-8·5% of all-cause mortality (or 101-118 additional deaths per year) in 2018. Unsafe work time increased by 0·31 h per day (95% CI 0·30-0·32; p<0·0001) in deforested areas compared to 0·03 h per day (0·03-0·04; p<0·0001) in areas that maintained forest cover. With 2·0°C of additional future global warming, relative to 2018, deforested areas could experience an estimated 17-20% increase in all-cause mortality (corresponding to an additional 236-282 deaths per year) and up to 5 h of unsafe work per day. INTERPRETATION: Heat exposure from deforestation and climate change has already started affecting populations in low latitude, industrialising countries, and future global warming indicates substantial health impacts in these regions. Further research should examine how deforestation is currently affecting the health and wellbeing of local communities. FUNDING: University of Washington Population Health Initiative. TRANSLATION: For the Bahasa translation of the abstract see Supplementary Materials section.


Subject(s)
Climate Change , Conservation of Natural Resources , Forests , Hot Temperature , Indonesia
SELECTION OF CITATIONS
SEARCH DETAIL
...