Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Curr Res Insect Sci ; 2: 100039, 2022.
Article in English | MEDLINE | ID: mdl-36003264

ABSTRACT

Alternative, intraspecific phenotypes offer an opportunity to identify the mechanistic basis of differences associated with distinctive life history strategies. Wing dimorphic insects, in which both flight-capable and flight-incapable individuals occur in the same population, are particularly well-studied in terms of why and how the morphs trade off flight for reproduction. Yet despite a wealth of studies examining the differences between female morphs, little is known about male differences, which could arise from different causes than those acting on females. Here we examined reproductive, gene expression, and biochemical differences between pea aphid (Acyrthosiphon pisum) winged and wingless males. We find that winged males are competitively superior in one-on-one mating circumstances, but wingless males reach reproductive maturity faster and have larger testes. We suggest that males tradeoff increased local matings with concurrent possible inbreeding for outbreeding and increased ability to find mates. At the mechanistic level, differential gene expression between the morphs revealed a possible role for activin and insulin signaling in morph differences; it also highlighted genes not previously identified as being functionally important in wing polymorphism, such as genes likely involved in sperm production. Further, we find that winged males have higher lipid levels, consistent with their use as flight fuel, but we find no consistent patterns of different levels of activity among five enzymes associated with lipid biosynthesis. Overall, our analyses provide evidence that winged versus wingless males exhibit differences at the reproductive, gene expression, and biochemical levels, expanding the field's understanding of the functional aspects of morph differences.

2.
J Insect Physiol ; 116: 70-76, 2019 07.
Article in English | MEDLINE | ID: mdl-31029600

ABSTRACT

Immune function is a complex collection of responses that often trade-off with one another and with other life history traits, because of the high costs of mounting and maintaining immune responses. Animals, even those from the same populations, may emphasize different aspects of immune function depending on their habitat and phenotype. For example, host population density mediates the threat from density-dependent parasites. Animals at high densities may emphasize fast-acting humoral responses, while those at low densities may favor slower, but more specific, cellular responses. However, these predictions may be dependent on other life history traits, like sex, which is associated with variation in many immune responses. We used wing dimorphic Gryllus firmus crickets to test humoral responses, measured by lysozyme and phenoloxidase activities, and cellular immune responses, measured by encapsulation, between morphs and sex. We found that both morphs and sexes differed in aspects of immune function. Long wing morphs had stronger encapsulation responses than short winged morphs. Additionally, females exhibited higher PO activity than males, and by contrast, males had higher lysozyme activity than females. Our study suggests that G. firmus morphs prioritize different immune responses that may reflect a balancing between the costs of immunity and differing pathogen threats. Male and female crickets exhibit differences in humoral immune responses that may reflect their different life history demands.


Subject(s)
Gryllidae/immunology , Immunity, Cellular , Immunity, Humoral , Life History Traits , Animals , Female , Gryllidae/anatomy & histology , Male , Sex Factors , Wings, Animal/anatomy & histology
3.
J Insect Physiol ; 107: 233-243, 2018.
Article in English | MEDLINE | ID: mdl-29656101

ABSTRACT

The functional basis of life history adaptation is a key topic of research in life history evolution. Studies of wing-polymorphism in the cricket Gryllus firmus have played a prominent role in this field. However, prior in-depth investigations of morph specialization have primarily focused on a single hormone, juvenile hormone, and a single aspect of intermediary metabolism, the fatty-acid biosynthetic component of lipid metabolism. Moreover, the role of diurnal variation in life history adaptation in G. firmus has been understudied, as is the case for organisms in general. Here, we identify genes whose expression differs consistently between the morphs independent of time-of-day during early adulthood, as well as genes that exhibit a strong pattern of morph-specific diurnal expression. We find strong, consistent, morph-specific differences in the expression of genes involved in endocrine regulation, carbohydrate and lipid metabolism, and immunity - in particular, in the expression of an insulin-like-peptide precursor gene and genes involved in triglyceride production. We also find that the flight-capable morph exhibited a substantially greater number of genes exhibiting diurnal change in gene expression compared with the flightless morph, correlated with the greater circadian change in the hemolymph juvenile titer in the dispersing morph. In fact, diurnal differences in expression within the dispersing morph at different times of the day were significantly greater in magnitude than differences between dispersing and flightless morphs at the same time-of-day. These results provide important baseline information regarding the potential role of variable gene expression on life history specialization in morphs of G. firmus, and the first information on genetically-variable, diurnal change in gene expression, associated with a key life history polymorphism. These results also suggest the existence of prominent morph-specific circadian differences in gene expression in G. firmus, possibly caused by the morph-specific circadian rhythm in the juvenile hormone titer.


Subject(s)
Circadian Rhythm , Gene Expression , Gryllidae/growth & development , Gryllidae/genetics , Wings, Animal/growth & development , Age Factors , Animals , Female , Male , Nymph/genetics , Nymph/growth & development , Sex Factors
4.
J Insect Physiol ; 98: 199-204, 2017 04.
Article in English | MEDLINE | ID: mdl-28109904

ABSTRACT

Immune function is often involved in physiological trade-offs because of the energetic costs of maintaining constitutive immunity and mounting responses to infection. However, immune function is a collection of discrete immunity factors and animals should allocate towards factors that combat the parasite threat with the highest fitness cost. For example, animals on dispersal fronts of expanding population may be released from density-dependent diseases. The costs of immunity, however, and life history trade-offs in general, are often context dependent. Trade-offs are often most apparent under conditions of unusually limited resources or when animals are particularly stressed, because the stress response can shift priorities. In this study we tested how humoral and cellular immune factors vary between phenotypes of a wing dimorphic cricket and how physiological stress influences these immune factors. We measured constitutive lysozyme activity, a humoral immune factor, and encapsulation response, a cellular immune factor. We also stressed the crickets with a sham predator in a full factorial design. We found that immune strategy could be explained by the selective pressures encountered by each morph and that stress decreased encapsulation, but not lysozyme activity. These results suggest a possible trade-off between humoral and cellular immunity. Given limited resources and the expense of immune factors, parasite pressures could play a key factor in maintaining insect polyphenism via disruptive selection.


Subject(s)
Gryllidae/immunology , Immunity, Cellular , Immunity, Humoral , Micrococcus/physiology , Wings, Animal/anatomy & histology , Animals , Female , Gryllidae/anatomy & histology , Gryllidae/enzymology , Gryllidae/microbiology , Muramidase/metabolism , Phenotype , Stress, Physiological
5.
J Insect Physiol ; 95: 118-132, 2016 12.
Article in English | MEDLINE | ID: mdl-27686035

ABSTRACT

The influence of variable nutritional input on life history adaptation is a central, but incompletely understood aspect of life history physiology. The wing-polymorphic cricket, Gryllus firmus, has been extensively studied with respect to the biochemical basis of life history adaptation, in particular, modification of lipid metabolism that underlies the enhanced accumulation of lipid flight fuel in the dispersing morph [LW(f)=long wings with functional flight muscles] relative to the flightless (SW=short-winged) morph. To date, biochemical studies have been undertaken almost exclusively using a single laboratory diet. Thus, the extent to which nutritional heterogeneity, likely experienced in the field, influences this key morph adaptation is unknown. We used the experimental approach of the Geometric Framework for Nutrition and employed 13 diets that differed in the amounts and ratios of protein and carbohydrate to assess how nutrient amount and balance affects morph-specific lipid biosynthesis. Greater lipid biosynthesis and allocation to the soma in the LW(f) compared with the SW morph (1) occurred across the entire protein-carbohydrate landscape and (2) is likely an important contributor to elevated somatic lipid in the LW(f) morph across the entire protein-carbohydrate landscape. Nevertheless, dietary carbohydrate strongly affected lipid biosynthesis in a morph-specific manner (to a greater degree in the LW(f) morph). Lipogenesis in the SW morph may be constrained due to its more limited lipid storage capacity compared to the LW(f) morph. Elevated activity of NADP+-isocitrate dehydrogenase (NADP+-IDH), an enzyme that produces reducing equivalents for lipid biosynthesis, was correlated with and may be an important cause of the increased lipogenesis in the LW(f) morph across most, but not all regions of the protein-carbohydrate landscape. By contrast, ATP-citrate lyase (ACL), an enzyme that catalyzes the first step in the pathway of fatty acid biosynthesis, showed complex morph-specific patterns of activity that were strongly contingent upon diet. Morph-specific patterns of NADP+-IDH and ACL activities across the nutrient landscape were much more complex than expected from previous studies on a single diet. Collectively, our results indicate that the biochemical basis of an important life history adaptation, morph-specific lipogenesis, can be canalized in the face of substantial nutritional heterogeneity. However, in some regions of the protein-carbohydrate landscape, it is strongly modulated in a morph-specific manner.


Subject(s)
Gryllidae/physiology , Lipogenesis , Wings, Animal/metabolism , Animal Nutritional Physiological Phenomena , Animals , Diet , Female , Gryllidae/genetics , Polymorphism, Genetic , Wings, Animal/anatomy & histology
6.
Integr Comp Biol ; 56(2): 159-70, 2016 08.
Article in English | MEDLINE | ID: mdl-27252212

ABSTRACT

Daily rhythms for hormonal traits are likely widespread and important aspects of organismal (e.g., life history) adaptation. Yet they remain substantially understudied, especially with respect to variable rhythms within species. The cricket, Gryllus firmus, exhibits a genetically polymorphic circadian rhythm for the blood titer of the key hormone, juvenile hormone (JH). Gryllus firmus is also wing-polymorphic, consisting of a dispersing morph that delays reproduction and a flightless morph with substantially enhanced egg production. JH circadian phenotype strongly covaries with morph type: The blood JH titer is strongly rhythmic in multiple populations artificially-selected for the dispersing morph (LW(f) = long wings with functional flight muscles) and is essentially arrhythmic in populations selected for the SW (short-winged) morph. Association between JH titer cycle and LW(f) morph is also found in natural populations of G. firmus and in several related species in the field. This is one of the very few studies of endocrine titer variation in natural populations of an insect. The morph-specific cycle is underlain by a circadian rhythm in hormone biosynthesis, which in turn is underlain by a rhythm in a brain neuropeptide regulator of JH biosynthesis. The morph-specific JH titer circadian cycle is also strongly correlated with a morph-specific daily rhythm in global gene expression. This is currently the only example of a genetically-variable hormone circadian rhythm in both the laboratory and field that is strongly associated with an ecologically important polymorphism. The extensive information on the underlying causes of the morph-specific JH titer rhythm, coupled with the strong association between the JH circadian rhythm and wing polymorphism makes this system in G. firmus an exceptional experimental model to investigate the mechanisms underlying circadian hormonal adaptations. Genetic polymorphism for the JH titer circadian rhythm in G. firmus is discussed in context of circadian rhythms for endocrine traits reported for vertebrates and insects. Consequences of the failure to identify endocrine circadian rhythms on the accuracy of estimation of quantitative-genetic parameters, such as heritability and correlations between hormonal and fitness-related traits, are also discussed.


Subject(s)
Circadian Rhythm , Gryllidae/physiology , Juvenile Hormones/metabolism , Polymorphism, Genetic , Animals , Female , Gryllidae/genetics
7.
J Exp Biol ; 218(Pt 2): 298-308, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25524979

ABSTRACT

Although life-history trade-offs result from the differential acquisition and allocation of nutritional resources to competing physiological functions, many aspects of this topic remain poorly understood. Wing-polymorphic insects, which possess alternative morphs that trade off allocation to flight capability versus early reproduction, provide a good model system for exploring this topic. In this study, we used the wing-polymorphic cricket Gryllus firmus to test how expression of the flight capability versus reproduction trade-off was modified across a heterogeneous protein-carbohydrate nutritional landscape. Newly molted adult female long- and short-winged crickets were given one of 13 diets with different concentrations and ratios of protein and digestible carbohydrate; for each cricket, we measured consumption patterns, growth and allocation to reproduction (ovary mass) versus flight muscle maintenance (flight muscle mass and somatic lipid stores). Feeding responses in both morphs were influenced more by total macronutrient concentration than by protein-carbohydrate ratio, except at high-macronutrient concentration, where protein-carbohydrate balance was important. Mass gain tended to be greatest on protein-biased diets for both morphs, but was consistently lower across all diets for long-winged females. When long-winged females were fed high-carbohydrate foods, they accumulated greater somatic lipid stores; on high-protein foods, they accumulated greater somatic protein stores. Food protein-carbohydrate content also affected short-winged females (selected for early reproductive onset), which showed dramatic increases in ovary size, including ovarian stores of lipid and protein, on protein-biased foods. This is the first study to show how the concentration and ratio of dietary protein and carbohydrate affects consumption and allocation to key physiological features associated with the reproduction-dispersal life-history trade-off.


Subject(s)
Diet , Gryllidae/growth & development , Gryllidae/physiology , Animal Nutritional Physiological Phenomena , Animals , Dietary Carbohydrates , Dietary Proteins , Female , Flight, Animal/physiology , Muscles , Ovary/physiology , Phenotype , Reproduction/physiology , Wings, Animal/physiology
8.
G3 (Bethesda) ; 5(2): 261-70, 2014 Dec 23.
Article in English | MEDLINE | ID: mdl-25538100

ABSTRACT

Environmental stress affects basic organismal functioning and can cause physiological, developmental, and reproductive impairment. However, in many nonmodel organisms, the core molecular stress response remains poorly characterized and the extent to which stress-induced transcriptional changes differ across qualitatively different stress types is largely unexplored. The current study examines the molecular stress response of the soybean aphid (Aphis glycines) using RNA sequencing and compares transcriptional responses to multiple stressors (heat, starvation, and plant defenses) at a standardized stress level (27% adult mortality). Stress-induced transcriptional changes showed remarkable variation, with starvation, heat, and plant defensive stress altering the expression of 3985, 510, and 12 genes, respectively. Molecular responses showed little overlap across all three stressors. However, a common transcriptional stress response was identified under heat and starvation, involved with up-regulation of glycogen biosynthesis and molecular chaperones and down-regulation of bacterial endosymbiont cellular and insect cuticular components. Stressor-specific responses indicated heat affected expression of heat shock proteins and cuticular components, whereas starvation altered a diverse set of genes involved in primary metabolism, oxidative reductive processes, nucleosome and histone assembly, and the regulation of DNA repair and replication. Exposure to host plant defenses elicited the weakest response, of which half of the genes were of unknown function. This study highlights the need for standardizing stress levels when comparing across stress types and provides a basis for understanding the role of general vs. stressor specific molecular responses in aphids.


Subject(s)
Aphids/genetics , Stress, Physiological/genetics , Animals , Genes, Insect , Sequence Analysis, RNA , Transcriptome
9.
Article in English | MEDLINE | ID: mdl-24726622

ABSTRACT

Considerable information exists on the physiological correlates of life history adaptation, while molecular data on this topic are rapidly accumulating. However, much less is known about the enzymological basis of life history adaptation in outbred populations. In the present study, we compared developmental profiles of fat body specific activity, kinetic constants of homogeneously purified and unpurified enzyme, and fat body enzyme concentration of the pentose-shunt enzyme, 6-phosphogluconate dehydrogenase (6PGDH, E.C.1.1.1.44) between the dispersing [long-winged, LW(f)] and flightless [short-winged, SW] genotypes of the cricket Gryllus firmus. Neither kcat nor the Michaelis constant for 6-phosphogluconate differed between 6PGDH from LW(f) versus SW morphs for either homogeneously purified or unpurified enzyme. Purified enzyme from the LW(f) morph exhibited reduced KM for NADP(+), but this was not observed for multiple KM(NADP+) estimates for unpurified enzyme. A polyclonal antibody was generated against 6PGDH which was used to develop a chemiluminescence assay to quantify 6PGDH concentration in fat body homogenates. Elevated enzyme concentration accounted for all of the elevated 6PGDH specific activity in the LW(f) morph during the juvenile and adult stages. Finally, activity of another pentose-shunt enzyme, glucose-6-phosphate dehydrogenase, strongly covaried with 6PGDH activity suggesting that variation in 6PGDH activity gives rise to variation in pentose shunt flux. This is one of the first life-history studies and one of the few studies of intraspecific enzyme adaptation to identify the relative importance of evolutionary change in enzyme concentration vs. kinetic constants to adaptive variation in enzyme activity in an outbred population.


Subject(s)
Gryllidae/enzymology , Insect Proteins/metabolism , Phosphogluconate Dehydrogenase/metabolism , Wings, Animal/enzymology , Adaptation, Physiological , Animals , Fat Body/enzymology , Insect Proteins/immunology , Insect Proteins/isolation & purification , Isoenzymes , Kinetics , Luminescent Measurements/methods , Organ Specificity , Phosphogluconate Dehydrogenase/analysis , Phosphogluconate Dehydrogenase/immunology , Phosphogluconate Dehydrogenase/isolation & purification , Rabbits
10.
PLoS One ; 9(1): e82129, 2014.
Article in English | MEDLINE | ID: mdl-24416137

ABSTRACT

Wing polymorphism is a powerful model for examining many aspects of adaptation. The wing dimorphic cricket species, Gryllus firmus, consists of a long-winged morph with functional flight muscles that is capable of flight, and two flightless morphs. One (obligately) flightless morph emerges as an adult with vestigial wings and vestigial flight muscles. The other (plastic) flightless morph emerges with fully-developed wings but later in adulthood histolyzes its flight muscles. Importantly both flightless morphs have substantially increased reproductive output relative to the flight-capable morph. Much is known about the physiological and biochemical differences between the morphs with respect to adaptations for flight versus reproduction. In contrast, little is known about the molecular genetic basis of these morph-specific adaptations. To address this issue, we assembled a de novo transcriptome of G. firmus using 141.5 million Illumina reads generated from flight muscles and fat body, two organs that play key roles in flight and reproduction. We used the resulting 34,411 transcripts as a reference transcriptome for differential gene expression analyses. A comparison of gene expression profiles from functional flight muscles in the flight-capable morph versus histolyzed flight muscles in the plastic flight incapable morph identified a suite of genes involved in respiration that were highly expressed in pink (functional) flight muscles and genes involved in proteolysis highly expressed in the white (histolyzed) flight muscles. A comparison of fat body transcripts from the obligately flightless versus the flight-capable morphs revealed differential expression of genes involved in triglyceride biosynthesis, lipid transport, immune function and reproduction. These data provide a valuable resource for future molecular genetics research in this and related species and provide insight on the role of gene expression in morph-specific adaptations for flight versus reproduction.


Subject(s)
Fat Body/metabolism , Flight, Animal/physiology , Gene Expression Profiling , Gryllidae/genetics , Metamorphosis, Biological/genetics , Muscles/metabolism , Transcriptome/genetics , Animals , Biological Transport/genetics , Fatty Acids/metabolism , Female , Gene Expression Regulation , Gene Ontology , Gryllidae/physiology , Lipids/biosynthesis , Molecular Sequence Annotation , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproducibility of Results , Reproduction , Sequence Analysis, RNA , Wings, Animal/physiology
11.
Methods Mol Biol ; 772: 377-96, 2011.
Article in English | MEDLINE | ID: mdl-22065450

ABSTRACT

Identifying mechanisms of molecular adaptation can provide important insights into the process of phenotypic evolution, but it can be exceedingly difficult to quantify the phenotypic effects of specific mutational changes. To verify the adaptive significance of genetically based changes in protein function, it is necessary to document functional differences between the products of derived and wild-type alleles and to demonstrate that such differences impinge on higher-level physiological processes (and ultimately, fitness). In the case of metabolic enzymes, this requires documenting in vivo differences in reaction rate that give rise to differences in flux through the pathway in which the enzymes function. These measured differences in pathway flux should then give rise to differences in cellular or systemic physiology that affect fitness-related variation in whole-organism performance. Efforts to establish these causal connections between genotype, phenotype, and fitness require experiments that carefully control for environmental variation and background genetic variation. Here, we discuss experimental approaches to evaluate the contributions of amino-acid mutations to adaptive phenotypic change. We discuss conceptual and methodological issues associated with in vitro and in vivo studies of protein function, and the evolutionary insights that can be gleaned from such studies. We also discuss the importance of isolating the effects of individual mutations to distinguish between positively selected substitutions that directly contribute to improvements in protein function versus positively selected, compensatory substitutions that mitigate negative pleiotropic effects of antecedent changes.


Subject(s)
Biological Evolution , Molecular Biology/methods , Mutation/genetics , Open Reading Frames/genetics , Animals , Genotype , Humans , Phenotype
12.
J Insect Sci ; 11: 53, 2011.
Article in English | MEDLINE | ID: mdl-21861657

ABSTRACT

Cytoplasmic NADP(+)-isocitrate dehydrogenase (NADP(+)-IDH) has been purified and characterized, and its gene sequenced in many animal, plant, and yeast species. However, much less information is available on this enzyme-gene in insects. As a first step in investigating the biochemical and molecular mechanisms by which NADP(+)-IDH contributes to adaptations for flight vs. reproduction in insects, the enzyme was purified to homogeneity in the wing-dimorphic cricket, Gryllus firmus, characterized, and its corresponding gene sequenced. Using a combination of polyethylene glycol precipitation, Cibacron-Blue affinity chromatography, and hydrophobic interaction chromatography the enzyme was purified 291-fold (7% yield; specific activity = 15.8 µmol NADPH/min/mg protein). The purified enzyme exhibited a single band on SDS PAGE (46.3 kD), but consisted of two N-terminal amino acid sequences that differed in the first two amino acids. Purified enzyme exhibited standard Michaelis-Menten kinetics at pH 8.0 and 28° C (K(M(NADP+)) = 2.3 ± 0.4 µM; K(M(Na+-Isocitrate)) = 14.7 + 1.8 µM). Subunit molecular mass and K(M)S were similar to published values for NADP(+)-IDHs from a variety of vertebrate and two insect species. PCR amplification of an internal sequence using genomic DNA followed by 3' and 5' RACE yielded a nucleotide sequence of the mature protein and translated amino-acid sequences that exhibited high similarity (40-50% and 70-80%, respectively) to sequences from insect and vertebrate NADP(+)-IDHs. Two potential ATG start codons were identified. Both Nterminal amino-acid sequences matched the nucleotide sequence, consistent with both enzyme forms being transcribed from the same gene, although these variants could also be encoded by different genes. Bioinformatic analyses and differential centrifugation indicated that the majority, if not all, of the enzyme is cytoplasmic. The enzyme exhibited high specific activity in fat body, head and gut, and a single band on native PAGE.


Subject(s)
Fat Body/enzymology , Flight, Animal , Gryllidae/enzymology , Isocitrate Dehydrogenase/metabolism , Amino Acid Sequence , Animals , Base Sequence , Electrophoresis, Polyacrylamide Gel , Enzyme Stability , Female , Gryllidae/genetics , Insect Proteins/genetics , Insect Proteins/isolation & purification , Insect Proteins/metabolism , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/isolation & purification , Kinetics , Lipogenesis , Molecular Sequence Data , Nucleic Acid Amplification Techniques , Sequence Analysis, Protein , Wings, Animal
13.
Mol Biol Evol ; 28(12): 3381-93, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21705380

ABSTRACT

Although whole-organism aspects of life-history physiology are well studied and molecular information (e.g., transcript abundance) on life-history variation is accumulating rapidly, much less information is available on the biochemical (enzymological) basis of life-history adaptation. The present study investigated the biochemical and molecular causes of specific activity differences of the lipogenic enzyme, NADP(+)-isocitrate dehydrogenase, between genetic lines of the wing-polymorphic cricket, Gryllus firmus, which differ in lipid biosynthesis and life history. With one exception, variation among 21 Nadp(+)-Idh genomic sequences, which spanned the entire coding sequence of the gene, was restricted to a few synonymous substitutions within and among replicate flight-capable or flightless lines. No NADP(+)-IDH electromorph variation was observed among individuals within or among lines as determined by polyacrylamide gel electrophoresis. Nor did any NADP(+)-IDH kinetic or stability parameter, such as K(M) for substrate or cofactor, k(cat), or thermal denaturation, differ between flight-capable and flightless lines. By contrast, line differences in NADP(+)-IDH-specific activity strongly covaried with transcript abundance and enzyme protein concentration. These results demonstrate that NADP(+)-IDH-specific activity differences between artificially selected lines of G. firmus are due primarily, if not exclusively, to genetic variation in regulators of NADP(+)-IDH gene expression, with no observed contribution from altered catalytic efficiency of the enzyme due to changes in amino acid sequence or posttranslational modification. Kinetic analyses indicate that in vitro differences in enzyme-specific activity between flight-capable and flightless lines likely occur in vivo. This study constitutes the most comprehensive analysis to date of the biochemical and molecular causes of naturally occurring genetic variation in enzyme activity that covaries strongly with life history.


Subject(s)
Adaptation, Biological , Gryllidae/enzymology , Gryllidae/genetics , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Amino Acid Sequence , Animals , Base Sequence , Female , Gene Expression Regulation, Enzymologic , Genetic Variation , Gryllidae/classification , Isocitrate Dehydrogenase/chemistry , Lipids/biosynthesis , Sequence Analysis, DNA
14.
J Exp Biol ; 214(Pt 2): 179-90, 2011 Jan 15.
Article in English | MEDLINE | ID: mdl-21177939

ABSTRACT

During the past decade, microevolution of intermediary metabolism has become an important new research focus at the interface between metabolic biochemistry and evolutionary genetics. Increasing recognition of the importance of integrative studies in evolutionary analysis, the rising interest in 'evolutionary systems biology', and the development of various 'omics' technologies have all contributed significantly to this developing interface. The present review primarily focuses on five prominent areas of recent research on pathway microevolution: lipid metabolism and life-history evolution; the electron transport system, hybrid breakdown and speciation; glycolysis, alcohol metabolism and population adaptation in Drosophila; chemostat selection in microorganisms; and anthocyanin pigment biosynthesis and flower color evolution. Some of these studies have provided a new perspective on important evolutionary topics that have not been investigated extensively from a biochemical perspective (hybrid breakdown, parallel evolution). Other studies have provided new data that augment previous biochemical information, resulting in a deeper understanding of evolutionary mechanisms (allozymes and biochemical adaptation to climate, life-history evolution, flower pigments and the genetics of adaptation). Finally, other studies have provided new insights into how the function or position of an enzyme in a pathway influences its evolutionary dynamics, in addition to providing powerful experimental models for investigations of network evolution. Microevolutionary studies of metabolic pathways will undoubtedly become increasingly important in the future because of the central importance of intermediary metabolism in organismal fitness, the wealth of biochemical data being provided by various omics technologies, and the increasing influence of integrative and systems perspectives in biology.


Subject(s)
Biological Evolution , Metabolic Networks and Pathways , Alcohols/metabolism , Animals , Anthocyanins/genetics , Anthocyanins/metabolism , Bacteria/genetics , Bacteria/metabolism , Drosophila/genetics , Drosophila/metabolism , Electron Transport , Fungi/genetics , Fungi/metabolism , Glycolysis , Lipid Metabolism , Plants/genetics , Plants/metabolism
15.
Annu Rev Physiol ; 72: 167-90, 2010.
Article in English | MEDLINE | ID: mdl-20148672

ABSTRACT

Although a species' locomotor capacity is suggestive of its ability to escape global climate change, such a suggestion is not necessarily straightforward. Species vary substantially in locomotor capacity, both ontogenetically and within/among populations, and much of this variation has a genetic basis. Accordingly, locomotor capacity can and does evolve rapidly, as selection experiments demonstrate. Importantly, even though this evolution of locomotor capacity may be rapid enough to escape changing climate, genetic correlations among traits (often due to pleiotropy) are such that successful or rapid dispersers are often limited in colonization or reproductive ability, which may be viewed as a trade-off. The nuanced assessment of this variation and evolution is reviewed for well-studied models: salmon, flying versus flightless insects, rodents undergoing experimental evolution, and metapopulations of butterflies. This work reveals how integration of physiology with population biology and functional genomics can be especially informative.


Subject(s)
Climate , Global Warming , Locomotion/physiology , Animal Migration/physiology , Animals , Behavior, Animal/physiology , Biological Evolution , Flight, Animal/physiology , Insecta/physiology , Photoperiod , Salmon/physiology , Temperature
16.
J Insect Physiol ; 56(3): 266-70, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19913023

ABSTRACT

Previous studies have documented a circadian cycle in juvenile hormone (JH) biosynthesis in the long-winged, flight-capable morph, but not in the short-winged flightless morph of the cricket Gryllus firmus. One rapid and reversible inhibitor of in vitro JH biosynthesis by the corpora allata (CA) in crickets is the neuropeptide Phe-Gly-Leu/Ile-amide type of allatostatins (ASTs). To investigate the possible role of allatostatin regulation of the morph-specific circadian cycle of JH production, the quantity of this type of AST in the nerves within the CA was determined by the density of anti-AST-immunostaining in confocal images using the Image J program. The density of immunostaining was inversely related to the rate of JH biosynthesis: Immunostaining in the CA was high and did not differ between morphs early in the photophase when the in vitro rate of JH biosynthesis is low and equivalent in the morphs. However, during the end of the photophase, when the rate of JH biosynthesis rises dramatically in the flight-capable morph, but not in the flightless morph, immunostaining was significantly lower in the flight-capable compared to the flightless morph. These results indicate that morph-specific differences in delivery of AST to the CA and its probable release likely regulate the morph-specific circadian pattern of JH biosynthesis. Also, the negative correlation between AST density and JH production provides evidence for predicting the periods of altered release of these rapid-acting paracine regulators of JH biosynthesis.


Subject(s)
Circadian Rhythm , Corpora Allata/metabolism , Gryllidae/physiology , Hormone Antagonists/metabolism , Juvenile Hormones/biosynthesis , Morphogenesis , Neuropeptides/metabolism , Animals , Corpora Allata/anatomy & histology , Corpora Allata/growth & development , Female , Gryllidae/anatomy & histology , Gryllidae/genetics , Gryllidae/growth & development , Immunochemistry , Wings, Animal/anatomy & histology , Wings, Animal/growth & development , Wings, Animal/metabolism
17.
J Insect Physiol ; 55(5): 450-8, 2009 May.
Article in English | MEDLINE | ID: mdl-19100744

ABSTRACT

Previous studies demonstrated a high-amplitude, diel cycle for the hemolymph JH titer in the wing-polymorphic cricket, Gryllus firmus. The JH titer rose and fell in the flight-capable morph (long-winged, LW(f)) above and below the relatively temporally invariant JH titer in the flightless (short-winged, SW) morph. The morph-specific JH titer cycle appeared to be primarily driven by a morph-specific diel cycle in the rate of JH biosynthesis. In the present study, cycles of the JH titer and rate of JH biosynthesis in the LW(f) morph persisted in the laboratory under constant darkness with an approximate 24h periodicity. The JH titer cycle also shifted in concert with a shift in the onset of the scotophase, was temperature compensated in constant darkness, and became arrhythmic under constant light. These results provide strong support for the circadian basis of the morph-specific diel rhythm of the JH titer and JH biosynthetic rate. Persistence of the JH titer cycle under constant darkness in multiple LW-selected and SW-selected stocks also provides support for the genetic basis of the morph-associated circadian rhythm. The morph-specific JH titer cycle was observed in these stocks raised in the field, in both males and females, in each of 3 years studied. The onset of the cycle in the LW(f) morph, a few hours before sunset, correlated well with the onset of the cycle, a few hours before lights-off, in the laboratory. The morph-specific JH titer cycle is a general feature of G. firmus, under a variety of environmental conditions, and is not an artifact of specific laboratory conditions or specific genetic stocks. It is a powerful experimental model to investigate the mechanisms underlying endocrine circadian rhythms, their evolution, and their impact on life history evolution.


Subject(s)
Gryllidae/physiology , Juvenile Hormones/biosynthesis , Animals , Circadian Rhythm , Female , Flight, Animal , Gryllidae/growth & development , Male , Wings, Animal/growth & development , Wings, Animal/physiology
18.
J Insect Physiol ; 54(9): 1323-31, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18634793

ABSTRACT

Fat body and midgut juvenile hormone esterase (JHE) and juvenile hormone epoxide hydrolase (JHEH) specific activities, and plasma JHE activity, were measured throughout the last stadium in two pairs (blocks) of lines of the cricket Gryllus assimilis, each pair of which had been artificially selected for high- or low-plasma JHE activity. Highly significant differences were observed between high- and low-activity lines of each block on most days for fat body JHE, and on one day for midgut JHE activity. In each block, line differences in developmental profiles for fat body JHE activity paralleled line differences in plasma JHE activity during the early-mid stadium, but not during the latter part of the stadium. The developmental profile of midgut JHE activity differed from that of plasma and fat body JHE activity, exhibiting peaks during the early and latter parts of the stadium. Midgut and fat body JHEH activities exhibited a mid-stadium peak in all lines, but activities were very similar in all lines. Fat body JHE appears to be a more significant contributor to plasma JHE than is midgut JHE. During the middle of the last stadium (day 4), Jhe transcript abundance was significantly higher in fat body or midgut of high- vs. low-JHE-activity lines. Jhe transcript abundance was positively correlated with JHE enzyme activity in either fat body or midgut, and with plasma JHE activity. Natural populations of G. assimilis harbor genetic variation for Jhe gene expression which appears to contribute to genetic variation in JHE specific activity in fat body and midgut. These genes appear to have been the targets of artificial selection that resulted in lines that differ dramatically in high- or low-plasma JHE activity. These genes appear to have little, if any, pleiotropic effects on JHEH specific activity.


Subject(s)
Carboxylic Ester Hydrolases/metabolism , Epoxide Hydrolases/metabolism , Evolution, Molecular , Genetic Variation , Gryllidae/enzymology , Animals , DNA, Complementary/genetics , Fat Body/enzymology , Gastrointestinal Tract/enzymology , Gene Expression , Gryllidae/genetics , Gryllidae/growth & development , Nymph/enzymology , Selection, Genetic
19.
Physiol Biochem Zool ; 80(6): 592-606, 2007.
Article in English | MEDLINE | ID: mdl-17909996

ABSTRACT

Virtually no published information exists on insect endocrine traits in natural populations, which limits our understanding of endocrine microevolution. We characterized the hemolymph titers of juvenile hormone (JH) and ecdysteroids (ECDs), two key insect hormones, in field-collected short-winged, flightless (SW) and long-winged, flight-capable (LW(f)) morphs of the cricket Gryllus firmus. The JH titer exhibited a dramatic circadian rhythm in the LW(f) morph but was temporally constant in the flightless SW morph. This pattern was consistent in each of three years; in young, middle-aged, and older G. firmus; and in three other cricket species. The ECD titer was considerably higher in SW than in LW(f) females but did not exhibit temporal variation in any morph and did not differ between male morphs. JH and ECD may control different aspects of the morph-specific trade-off between nocturnal dispersal and reproduction. Results confirm and extend laboratory studies on young female G. firmus; most, but not all, important aspects of morph-specific differences in JH and ECD titers can be extrapolated from field to laboratory environments and vice versa. Hormone titers in Gryllus are more complex than those proposed in evolutionary endocrine models. Directly measuring hormone titer variation remains a fundamentally important task of insect evolutionary endocrinology.


Subject(s)
Ecdysteroids/metabolism , Gryllidae/metabolism , Juvenile Hormones/metabolism , Aging , Animals , Biological Evolution , Circadian Rhythm , Ecdysteroids/blood , Female , Gryllidae/genetics , Gryllidae/growth & development , Hemolymph , Juvenile Hormones/blood , Male , Wings, Animal
20.
Evol Dev ; 9(5): 499-513, 2007.
Article in English | MEDLINE | ID: mdl-17845520

ABSTRACT

"Hormone manipulation" is being used increasingly in evo-devo studies as the sole or primary technique to investigate the regulation of insect polymorphism by hormones, most notably juvenile hormone (JH). This manuscript critically evaluates the limitations and strengths of this indirect method for inferring aspects of endocrine regulation, and conclusions derived from recent endocrine studies of evolution and development in which data have been obtained primarily or exclusively by this method. The main conclusions of this critique are as follows: first, when used alone, or as the primary empirical technique, hormone manipulation is a superficial method that is fraught with problems with respect to identifying a hormone that regulates developmental-morphological variation, let alone identifying its mode of action. Second, conclusions reported in studies using this technique as the exclusive, or nearly exclusive experimental approach, most notably recent studies of JH regulation of horn polymorphism in dung beetles, and some studies of wing polymorphism should be considered, at best, weakly supported until substantiated by well-validated, direct methods. Finally, there are many reliable and well-validated techniques that can be used to directly and accurately quantify JH levels, and activities of JH regulators, in many insects, even in small, nonmodel species. Some of the most important of these assays will be briefly described and their strengths and weaknesses will be discussed.


Subject(s)
Biological Evolution , Insecta/growth & development , Juvenile Hormones/metabolism , Adaptation, Physiological , Animals , Endocrine Glands/physiology , Entomology/methods , Insect Hormones/metabolism , Insect Hormones/pharmacology , Insect Hormones/physiology , Insecta/anatomy & histology , Insecta/physiology , Juvenile Hormones/pharmacology , Juvenile Hormones/physiology , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...