Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Bioinformatics ; 40(2)2024 02 01.
Article in English | MEDLINE | ID: mdl-38335928

ABSTRACT

MOTIVATION: The accurate prediction of how mutations change biophysical properties of proteins or RNA is a major goal in computational biology with tremendous impacts on protein design and genetic variant interpretation. Evolutionary approaches such as coevolution can help solving this issue. RESULTS: We present pycofitness, a standalone Python-based software package for the in silico mutagenesis of protein and RNA sequences. It is based on coevolution and, more specifically, on a popular inverse statistical approach, namely direct coupling analysis by pseudo-likelihood maximization. Its efficient implementation and user-friendly command line interface make it an easy-to-use tool even for researchers with no bioinformatics background. To illustrate its strengths, we present three applications in which pycofitness efficiently predicts the deleteriousness of genetic variants and the effect of mutations on protein fitness and thermodynamic stability. AVAILABILITY AND IMPLEMENTATION: https://github.com/KIT-MBS/pycofitness.


Subject(s)
RNA , Software , RNA/genetics , Amino Acid Sequence , Computational Biology , Proteins
2.
Nucleic Acids Res ; 49(22): 12661-12672, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34871451

ABSTRACT

Co-evolutionary models such as direct coupling analysis (DCA) in combination with machine learning (ML) techniques based on deep neural networks are able to predict accurate protein contact or distance maps. Such information can be used as constraints in structure prediction and massively increase prediction accuracy. Unfortunately, the same ML methods cannot readily be applied to RNA as they rely on large structural datasets only available for proteins. Here, we demonstrate how the available smaller data for RNA can be used to improve prediction of RNA contact maps. We introduce an algorithm called CoCoNet that is based on a combination of a Coevolutionary model and a shallow Convolutional Neural Network. Despite its simplicity and the small number of trained parameters, the method boosts the positive predictive value (PPV) of predicted contacts by about 70% with respect to DCA as tested by cross-validation of about eighty RNA structures. However, the direct inclusion of the CoCoNet contacts in 3D modeling tools does not result in a proportional increase of the 3D RNA structure prediction accuracy. Therefore, we suggest that the field develops, in addition to contact PPV, metrics which estimate the expected impact for 3D structure modeling tools better. CoCoNet is freely available and can be found at https://github.com/KIT-MBS/coconet.


Subject(s)
Neural Networks, Computer , RNA/chemistry , Algorithms , Models, Molecular , Nucleic Acid Conformation , Riboswitch
3.
RNA ; 26(7): 794-802, 2020 07.
Article in English | MEDLINE | ID: mdl-32276988

ABSTRACT

RNA molecules play many pivotal roles in a cell that are still not fully understood. Any detailed understanding of RNA function requires knowledge of its three-dimensional structure, yet experimental RNA structure resolution remains demanding. Recent advances in sequencing provide unprecedented amounts of sequence data that can be statistically analyzed by methods such as direct coupling analysis (DCA) to determine spatial proximity or contacts of specific nucleic acid pairs, which improve the quality of structure prediction. To quantify this structure prediction improvement, we here present a well curated data set of about 70 RNA structures of high resolution and compare different nucleotide-nucleotide contact prediction methods available in the literature. We observe only minor differences between the performances of the different methods. Moreover, we discuss how robust these predictions are for different contact definitions and how strongly they depend on procedures used to curate and align the families of homologous RNA sequences.


Subject(s)
RNA/genetics , Data Analysis , Datasets as Topic , Nucleic Acid Conformation , Sequence Alignment/methods
4.
Bioinformatics ; 36(7): 2264-2265, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31778142

ABSTRACT

MOTIVATION: The ongoing advances in sequencing technologies have provided a massive increase in the availability of sequence data. This made it possible to study the patterns of correlated substitution between residues in families of homologous proteins or RNAs and to retrieve structural and stability information. Direct coupling analysis (DCA) infers coevolutionary couplings between pairs of residues indicating their spatial proximity, making such information a valuable input for subsequent structure prediction. RESULTS: Here, we present pydca, a standalone Python-based software package for the DCA of protein- and RNA-homologous families. It is based on two popular inverse statistical approaches, namely, the mean-field and the pseudo-likelihood maximization and is equipped with a series of functionalities that range from multiple sequence alignment trimming to contact map visualization. Thanks to its efficient implementation, features and user-friendly command line interface, pydca is a modular and easy-to-use tool that can be used by researchers with a wide range of backgrounds. AVAILABILITY AND IMPLEMENTATION: pydca can be obtained from https://github.com/KIT-MBS/pydca or from the Python Package Index under the MIT License. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
RNA , Software , Amino Acid Sequence , Proteins , Sequence Alignment
5.
Biochem Soc Trans ; 45(6): 1253-1261, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-29054926

ABSTRACT

Evolution leads to considerable changes in the sequence of biomolecules, while their overall structure and function remain quite conserved. The wealth of genomic sequences, the 'Biological Big Data', modern sequencing techniques provide allows us to investigate biomolecular evolution with unprecedented detail. Sophisticated statistical models can infer residue pair mutations resulting from spatial proximity. The introduction of predicted spatial adjacencies as constraints in biomolecular structure prediction workflows has transformed the field of protein and RNA structure prediction toward accuracies approaching the experimental resolution limit. Going beyond structure prediction, the same mathematical framework allows mimicking evolutionary fitness landscapes to infer signaling interactions, epistasis, or mutational landscapes.


Subject(s)
Biological Evolution , Epistasis, Genetic , Signal Transduction , Amino Acid Sequence , Models, Statistical , Molecular Structure , Sequence Homology, Amino Acid
6.
Phys Biol ; 12(2): 026007, 2015 Apr 17.
Article in English | MEDLINE | ID: mdl-25884278

ABSTRACT

Gene activity in eukaryotes is in part regulated at the level of chromatin through the assembly of local chromatin states that are more or less permissive to transcription. How do these chromatin states achieve their functions and whether or not they contribute to the epigenetic inheritance of the transcriptional program remain to be elucidated. In cycling cells, stability is indeed strongly challenged by the periodic occurrence of replication and cell division. To address this question, we perform simulations of the stochastic dynamics of chromatin states when driven out-of-equilibrium by periodic perturbations. We show how epigenetic memory is significantly affected by the cell cycle length. In addition, we develop a simple model to connect the epigenetic state to the transcriptional state and gene activity. In particular, it suggests that replication may induce transcriptional bursting at repressive loci. Finally, we discuss how our findings-effect of replication and link to gene transcription-have original and deep implications to various biological contexts of epigenetic memory.


Subject(s)
DNA Replication , Epigenesis, Genetic , Transcription, Genetic , Cell Cycle , Cell Division , Eukaryota/genetics , Models, Genetic , Monte Carlo Method , Stochastic Processes
SELECTION OF CITATIONS
SEARCH DETAIL
...