Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(23): 28747-28762, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37264972

ABSTRACT

A γ-alumina support functionalized with transition metals is one of the most widely used industrial catalysts for the total oxidation of volatile organic compounds (VOCs) as air pollutants at higher temperatures (280-450 °C). By rational design of a bimetal CuFe-γ-alumina catalyst, synthesized from a dawsonite alumina precursor, the activity in total oxidation of toluene as a model VOC at a lower temperature (200-380 °C) is achieved. A fundamental understanding of the catalyst and the reaction mechanism is elucidated by advanced microscopic and spectroscopic characterizations as well as by temperature-programmed surface techniques. The nature of the metal-support bonding and the optimal abundance between Cu-O-Al and Fe-O-Al species in the catalysts leads to synergistic catalytic activity promoted by small amounts of iron (Fe/Al = 0.005). The change in the metal oxide-cluster alumina interface is related to the nature of the surfaces to which the Cu atoms attach. In the most active catalyst, the CuO6 octahedra are attached to 4 Al atoms, while in the less active catalyst, they are attached to only 3 Al atoms. The oxidation of toluene occurs via the Langmuir-Hinshelwood mechanism. The presented material introduces a prospective family of low-cost and scalable oxidation catalysts with superior efficiency at lower temperatures.

2.
Top Curr Chem (Cham) ; 380(6): 51, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36180757

ABSTRACT

Solar-powered photocatalysis has come a long way since its humble beginnings in the 1990s, producing more than a thousand research papers per year over the past decade. In this review, immobilized photocatalysts operating under sunlight are highlighted. First, a literature review of solar-driven films is presented, along with some fundamental operational differences in relation to reactions involving suspended nanoparticles. Common strategies for achieving sunlight activity from films are then described, including doping, surface grafting, semiconductor coupling, and defect engineering. Synthetic routes to fabricate photocatalytically active films are briefly reviewed, followed by the important factors that determine solar photocatalysis efficiency, such as film thickness and structure. Finally, some important and specific characterization methods for films are described. This review shows that there are two main challenges in the study of photocatalytic materials in the form of (thin) films. First, the production of stable and efficient solar-driven films is still a challenge that requires an integrated approach from synthesis to characterization. The second is the difficulty in properly characterizing films. In any case, the research community needs to address these, as solar-driven photocatalytic films represent a viable option for sustainable air and water purification.


Subject(s)
Solar Energy , Water Purification , Catalysis , Semiconductors , Sunlight , Water Purification/methods
3.
ACS Macro Lett ; 10(10): 1248-1253, 2021 10 19.
Article in English | MEDLINE | ID: mdl-35549042

ABSTRACT

Conjugated porous polymers through the emulsion-templating polymerization process are typically prepared as monoliths, and the emulsions are cured via metal-catalyzed cross-coupling reactions. Herein, we report the design and synthesis of well-defined, millimeter-sized conjugated porous polymer beads by combining an oil-in-oil-in-oil (O/O/O) double emulsion as a de novo template and an amino-catalyzed Knoevenagel condensation reaction as a polymerization chemistry to cure such emulsions. The 1,4-phenylenediacetonitrile is reacted with aromatic multialdehydes in the presence of piperidine, and a series of metal-free poly(arylene cyano-vinylene) beads are prepared. All beads exhibit 3D-interconnected microcellular morphology and substantial semiconducting properties, such as strong light harvesting ability in the visible light region with electrochemical band gaps in the range of 2.05-2.33 eV. Finally, the promising photocatalytic activity of these conjugated beads is demonstrated for a model sulfoxidation reaction under visible light irradiation, and near quantitative conversions with excellent chemoselectivities (>99%) are obtained.


Subject(s)
Light , Polymers , Emulsions/chemistry , Polymerization , Polymers/chemistry , Porosity
4.
J Environ Manage ; 236: 591-602, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30771678

ABSTRACT

A novel hierarchically structured composite aimed as a stable catalyst for the heterogeneous Fenton-type (HFT) oxidation process was developed by using a cost-effective and versatile technique. Prussian Blue nanoparticles (PBNP) were dispersed onto aligned macroporous TiO2 (rutile) monoliths prepared via directional freezing of aqueous dispersions of TiO2 nanoparticles. The catalytic performance was evaluated in the HFT oxidation of an azo dye frequently used as a model contaminant, Orange G (OG). Experiments were carried out in a liquid batch-recycle reactor, in which the liquid flow rate was set to ensure negligible external mass transfer resistance. The catalyst exhibited good activity to form highly oxidative radicals from hydrogen peroxide decomposition, which readily discolored OG. Significant reduction of the time required to attain complete discoloration and improvement in TOC removal were achieved by adjusting operating conditions and oxidant dosage strategies. Almost complete OG conversion at around 90 min and 34.4% of TOC removal after 4 h were achieved by using the best evaluated strategy. The catalyst activity was tested under specific operating conditions and remained unaltered during 42 cycles of 4 h each (total 168 h). The fresh and used PBNP/TiO2 catalysts and the support were thoroughly characterized by several techniques. Results supported the excellent stability exhibited by the catalyst in the OG HFT oxidation.


Subject(s)
Iron , Water Pollutants, Chemical , Catalysis , Hydrogen Peroxide , Oxidation-Reduction
5.
Nanoscale ; 9(13): 4578-4592, 2017 Mar 30.
Article in English | MEDLINE | ID: mdl-28321442

ABSTRACT

The as-synthesized TiO2 nanorods a-TNR (amorphous TiO2 layer covering the crystalline anatase TiO2 core) and TNR (fully crystalline anatase TiO2) were decorated with reduced graphene oxide (rGO) to synthesize two series of TiO2 + rGO composites with different nominal loadings of GO (from 4 to 20 wt%). The structural, surface and electronic properties of the obtained TiO2 + rGO composites were analyzed and correlated to their performance in the photocatalytic oxidation of aqueous bisphenol A solution. X-ray photoelectron spectroscopy (XPS) analyses revealed that charge separation in TiO2 + rGO composites is improved due to the perfect matching of TiO2 and rGO valence band maxima (VBM). Cyclic voltammetry (CV) experiments revealed that the peak-to-peak separations (ΔEp) are the lowest and the oxidation current densities are the highest for composites with a nominal 10 wt% GO content, meaning that it is much easier for the charge carriers to percolate through the solid, resulting in improved charge migration. Due to the high charge carrier mobility in rGO and perfect VBM matching between TiO2 and rGO, the electron-hole recombination in composites was suppressed, resulting in more electrons and holes being able to participate in the photocatalytic reaction. rGO amounts above 10 wt% decreased the photocatalytic activity; thus, it is critical to optimize its amount in the TiO2 + rGO composites for achieving the highest photocatalytic activity. BPA degradation rates correlated completely with the results of the CV measurements, which directly evidenced improved charge separation and migration as the crucial parameters governing photocatalysis.

6.
J Mater Sci Mater Med ; 25(4): 1099-114, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24452270

ABSTRACT

Samples of the quaternary Ti-20Nb-10Zr-5Ta alloy were immersed in Hanks' simulated physiological solution and in minimum essential medium (MEM) for 25 days. Samples of Ti metal served as controls. During immersion, the concentration of ions dissolved in MEM was measured by inductively coupled plasma mass spectrometry, while at the end of the experiment the composition of the surface layers was analyzed by X-ray photoelectron spectroscopy, and their morphology by scanning electron microscopy equipped for chemical analysis. The surface layer formed during immersion was comprised primarily of TiO2 but contained oxides of alloying elements as well. The degree of oxidation differed for different metal cations; while titanium achieved the highest valency, tantalum remained as the metal or is oxidized to its sub-oxides. Calcium phosphate was formed in both solutions, while formation of organic-related species was observed only in MEM. Dissolution of titanium ions was similar for metal and alloy. Among alloying elements, zirconium dissolved in the largest quantity. The long-term effects of alloy implanted in the recipient's body were investigated in MEM, using two types of human cells-an osteoblast-like cell line and immortalized pulmonary fibroblasts. The in vitro biocompatibility of the quaternary alloy was similar to that of titanium, since no detrimental effects on cell survival, induction of apoptosis, delay of growth, or change in alkaline phosphatase activity were observed on incubation in MEM.


Subject(s)
Alloys/chemistry , Biocompatible Materials/chemistry , Niobium/chemistry , Tantalum/chemistry , Titanium/chemistry , Zirconium/chemistry , Alkaline Phosphatase/metabolism , Alloys/toxicity , Apoptosis/drug effects , Biocompatible Materials/toxicity , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Isotonic Solutions , Materials Testing , Niobium/toxicity , Osteoblasts/cytology , Osteoblasts/drug effects , Osteoblasts/enzymology , Photoelectron Spectroscopy , Solubility , Surface Properties , Tantalum/toxicity , Titanium/toxicity , Zirconium/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...