Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Genet ; 50(12): 1754, 2018 12.
Article in English | MEDLINE | ID: mdl-30425353

ABSTRACT

In the version of this article originally published, the accession codes listed in the data availability section were incorrect and the section was incomplete. The text for this section should have read "The genome assembly and gene annotation have been deposited in the NCBI database under accession number QVOL00000000, BioProject number PRJNA483885 and BioSample number SAMN09753102. The data can also be downloaded from the following link: http://www.life.illinois.edu/ming/downloads/Spontaneum_genome/ ." The errors have been corrected in the HTML and PDF versions of the article.

2.
Nat Genet ; 50(11): 1565-1573, 2018 11.
Article in English | MEDLINE | ID: mdl-30297971

ABSTRACT

Modern sugarcanes are polyploid interspecific hybrids, combining high sugar content from Saccharum officinarum with hardiness, disease resistance and ratooning of Saccharum spontaneum. Sequencing of a haploid S. spontaneum, AP85-441, facilitated the assembly of 32 pseudo-chromosomes comprising 8 homologous groups of 4 members each, bearing 35,525 genes with alleles defined. The reduction of basic chromosome number from 10 to 8 in S. spontaneum was caused by fissions of 2 ancestral chromosomes followed by translocations to 4 chromosomes. Surprisingly, 80% of nucleotide binding site-encoding genes associated with disease resistance are located in 4 rearranged chromosomes and 51% of those in rearranged regions. Resequencing of 64 S. spontaneum genomes identified balancing selection in rearranged regions, maintaining their diversity. Introgressed S. spontaneum chromosomes in modern sugarcanes are randomly distributed in AP85-441 genome, indicating random recombination among homologs in different S. spontaneum accessions. The allele-defined Saccharum genome offers new knowledge and resources to accelerate sugarcane improvement.


Subject(s)
Genome, Plant/genetics , Polyploidy , Saccharum/genetics , Alleles , Chimera/genetics , Chromosome Duplication , Chromosomes, Plant , High-Throughput Nucleotide Sequencing , Phylogeny , Selection, Genetic , Sorghum/genetics , Translocation, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...