Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 20(20)2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33092118

ABSTRACT

Distributed systems provide smart functionality to everyday objects with the help of wireless sensors using the internet. Since the last decade, the industry is struggling to develop efficient and intelligent protocols to integrate a huge number of smart objects in distributed computing environments. However, the main challenge for smart and distributed system designers lies in the integration of a large number of heterogeneous components for faster, cheaper, and more efficient functionalities. To deal with this issue, practitioners are using edge computing along with server and desktop technology for the development of smart applications by using Service-Oriented Architecture (SOA) where every smart object offers its functionality as a service, enabling other objects to interact with them dynamically. In order to make such a system, researchers have considered context-awareness and Quality of Service (QoS) attributes of device services. However, context modeling is a complicated task since it could include everything around the applications. Moreover, it is also important to consider non-functional interactions that may have an impact on the behavior of the complete system. In this regard, various research dimensions are explored. However, rich context-aware modeling, QoS, user priorities, grouping, and value type direction along with uncertainty are not considered properly while modeling of incomplete or partial domain knowledge during ontology engineering, resulting in low accuracy of results. In this paper, we present a semantic and logic-based formal framework (hybrid) to find the best service among many candidate services by considering the limitations of existing frameworks. Experimental results of the proposed framework show the improvement of the discovered results.

2.
Comput Intell Neurosci ; 2019: 8590560, 2019.
Article in English | MEDLINE | ID: mdl-31915429

ABSTRACT

In healthcare, the analysis of patients' activities is one of the important factors that offer adequate information to provide better services for managing their illnesses well. Most of the human activity recognition (HAR) systems are completely reliant on recognition module/stage. The inspiration behind the recognition stage is the lack of enhancement in the learning method. In this study, we have proposed the usage of the hidden conditional random fields (HCRFs) for the human activity recognition problem. Moreover, we contend that the existing HCRF model is inadequate by independence assumptions, which may reduce classification accuracy. Therefore, we utilized a new algorithm to relax the assumption, allowing our model to use full-covariance distribution. Also, in this work, we proved that computation wise our method has very much lower complexity against the existing methods. For the experiments, we used four publicly available standard datasets to show the performance. We utilized a 10-fold cross-validation scheme to train, assess, and compare the proposed model with the conditional learning method, hidden Markov model (HMM), and existing HCRF model which can only use diagonal-covariance Gaussian distributions. From the experiments, it is obvious that the proposed model showed a substantial improvement with p value ≤0.2 regarding the classification accuracy.


Subject(s)
Accelerometry/methods , Algorithms , Pattern Recognition, Automated/methods , Actigraphy , Humans , Markov Chains , Motor Activity , Normal Distribution
3.
PLoS One ; 10(4): e0123086, 2015.
Article in English | MEDLINE | ID: mdl-25928358

ABSTRACT

The composite service design modeling is an essential process of the service-oriented software development life cycle, where the candidate services, composite services, operations and their dependencies are required to be identified and specified before their design. However, a systematic service-oriented design modeling method for composite services is still in its infancy as most of the existing approaches provide the modeling of atomic services only. For these reasons, a new method (ComSDM) is proposed in this work for modeling the concept of service-oriented design to increase the reusability and decrease the complexity of system while keeping the service composition considerations in mind. Furthermore, the ComSDM method provides the mathematical representation of the components of service-oriented design using the graph-based theoryto facilitate the design quality measurement. To demonstrate that the ComSDM method is also suitable for composite service design modeling of distributed embedded real-time systems along with enterprise software development, it is implemented in the case study of a smart home. The results of the case study not only check the applicability of ComSDM, but can also be used to validate the complexity and reusability of ComSDM. This also guides the future research towards the design quality measurement such as using the ComSDM method to measure the quality of composite service design in service-oriented software system.


Subject(s)
Software , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...