Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Sci ; 94(3): 989-99, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27065261

ABSTRACT

Artificial rearing and formula feeding is coming more into the focus due to increasing litter sizes and limited nursing capacity of sows. The formula composition is important to effectively support the development of the gut and prevent intestinal dysfunction in neonatal piglets. In this study, newborn piglets ( = 8 per group) were fed a bovine milk-based formula (FO), containing skimmed milk and whey as the sole protein and carbohydrate sources, or were suckled by the sow (sow milk [SM]). After 2 wk, tissue from the jejunum was analyzed for structural (i.e., morphometry) and functional (i.e., disaccharidase activity, glucose transport, permeability toward macromolecules, and immune cell presence) changes and concomitant expression of related genes. Formula-fed piglets had more liquid feces ( < 0.05) over the entire experimental period. Although FO contained twice as much lactose (46% on a DM basis) as SM (21%) and no maltose or starch, the lactase activity was lower ( < 0.05) and glucose transport capacity was higher ( < 0.05) in FO-fed pigs. The relative proportion of intraepithelial natural killer cells and proinflammatory cytokine gene expression (, , and ) was higher in FO-fed pigs ( < 0.05). Piglets fed FO had deeper crypts, larger villus area, and higher expression of caspase 3 and proliferating cell nuclear antigen ( < 0.05). Epithelial permeability toward fluorescein isothiocyanate-dextran was higher and expression of claudin-4 was lower in FO-fed piglets ( < 0.05). The data suggest an early response to bovine milk-based compounds in the FO accompanied with early onset of functional maturation and impaired barrier function. Whether lactose, absence of species-specific protective factors, or antigenicity of foreign proteins lead to to the observed intestinal reactions requires further clarification.


Subject(s)
Animal Feed/analysis , Jejunum/drug effects , Milk/metabolism , Swine/growth & development , Animals , Animals, Newborn , Cattle , Diet/veterinary , Female , Food, Formulated , Intestinal Mucosa/drug effects , Jejunum/physiology , Lactose/metabolism , Milk/chemistry
2.
J Trace Elem Med Biol ; 35: 1-6, 2016 May.
Article in English | MEDLINE | ID: mdl-27049121

ABSTRACT

A study was conducted to determine the effect of high dietary zinc (Zn) oxide on trace element accumulation in various organs with special emphasis on the kidney. A total of 40 weaned piglets were allocated into two groups with 16 and 24 piglets each receiving a diet containing normal (NZn; 100mg Zn/kg) or high (HZn; 2,100mg Zn/kg) Zn concentration, respectively. After two weeks, eight piglets from each treatment were killed and organ samples were taken. Eight piglets from the remaining 16 pigs fed HZn diets were changed to NZn diets (CZn). All remaining piglets were killed after another two weeks for organ sampling. Trace element concentration was determined in the jejunum, liver, kidney, pancreas, bone (metacarpal IV), spleen, lung, thymus, tonsils and lymph nodes of jejunum, ileum and colon. Kidney mRNA expression of Zn transporter ZnT1 and ZIP4, genes involved in Cu metabolism (Ctr1, Atox1, SOD1, ATP7A, CCS, CP) and divalent metal ion transport (DMT1) and binding (MT-1a, MT-2b, MT-3) were determined. The Zn concentration in jejunum, liver, pancreas tissue and metacarpal IV was higher (P<0.05) in HZn group compared with NZn and CZn groups. Trace element concentration in organs of CZn pigs was similar to those fed NZn diets. Zn concentration in muscle, lung and lymphatic organs as thymus, tonsils, spleen and lymph nodes of jejunum, ileum and colon did not differ between the groups. Zn and Cu were positively correlated (R=0.67; P<0.05) in the kidney. No significant differences for Cu chaperones, Cu transporters and Cu-dependent factors were determined despite decreased expression of Atox1 after two weeks and increased Ctr1 expression over time in the HZn group. Expression of MT-1a, MT-2b and MT-3 were significantly higher in HZn fed pigs with most pronounced effects for MT-1a > MT-2b > MT-3. Gene expression of MTs in pigs fed CZn diets did not differ from pigs fed NZn diets. The data suggest that high dietary Zn feeding in pigs leads to Cu co-accumulation in the kidney of pigs with minor effect on genes relevant for Cu metabolism. In addition, the organ Zn and Cu accumulation is reversible after two weeks of withdrawal of high dietary Zn.


Subject(s)
Copper/metabolism , Diet , Gene Expression Regulation/drug effects , Kidney/metabolism , Metallothionein/genetics , Zinc/pharmacology , Animals , Animals, Newborn , Kidney/drug effects , Metallothionein/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sus scrofa , Trace Elements/metabolism , Weaning
SELECTION OF CITATIONS
SEARCH DETAIL
...