Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 9(8): 7804-14, 2015 Aug 25.
Article in English | MEDLINE | ID: mdl-26027877

ABSTRACT

Within the area of surface science, one of the "holy grails" is to directly visualize a chemical reaction at the atomic scale. Whereas this goal has been reached by high-resolution scanning tunneling microscopy (STM) in a number of cases for reactions occurring at flat surfaces, such a direct view is often inhibited for reaction occurring at steps and interfaces. Here we have studied the CO oxidation reaction at the interface between ultrathin FeO islands and a Pt(111) support by in situ STM and density functional theory (DFT) calculations. Time-lapsed STM imaging on this inverse model catalyst in O2 and CO environments revealed catalytic activity occurring at the FeO-Pt(111) interface and directly showed that the Fe-edges host the catalytically most active sites for the CO oxidation reaction. This is an important result since previous evidence for the catalytic activity of the FeO-Pt(111) interface is essentially based on averaging techniques in conjunction with DFT calculations. The presented STM results are in accord with DFT+U calculations, in which we compare possible CO oxidation pathways on oxidized Fe-edges and O-edges. We found that the CO oxidation reaction is more favorable on the oxidized Fe-edges, both thermodynamically and kinetically.

2.
ACS Nano ; 9(1): 573-83, 2015 Jan 27.
Article in English | MEDLINE | ID: mdl-25574971

ABSTRACT

We used high-resolution scanning tunneling microscopy to study the structure of ultrathin FeO islands grown on Pt(111). Our focus is particularly on the edges of the FeO islands that are important in heterogeneous catalysis, as they host the active sites on inversed catalysts. To imitate various reaction environments we studied pristine, oxidized, and reduced FeO islands. Oxidation of the FeO islands by O2 exposure led to the formation of two types of O adatom dislocations and to a restructuring of the FeO islands, creating long O-rich edges and few short Fe-terminated edges. In contrast, reducing the FeO islands led to a dominance of Fe-rich edges and the occurrence of few and short O-rich edges. In addition, for reducing conditions we observed the formation of O vacancy dislocations on the FeO islands. Through the identification of O adatom and O vacancy dislocations known from closed ultrathin FeO films and geometrical considerations we unraveled the atomic structure of the predominant FeO boundaries of pristine, oxidized, and reduced FeO islands. The results indicate an astonishing flexibility of the FeO islands on Pt(111), since the predominant edge termination and the island shape depend strongly on the preparation conditions.

3.
Nat Commun ; 5: 4193, 2014 Jun 30.
Article in English | MEDLINE | ID: mdl-24979078

ABSTRACT

The adhesion of water to solid surfaces is characterized by the tendency to balance competing molecule-molecule and molecule-surface interactions. Hydroxyl groups form strong hydrogen bonds to water molecules and are known to substantially influence the wetting behaviour of oxide surfaces, but it is not well-understood how these hydroxyl groups and their distribution on a surface affect the molecular-scale structure at the interface. Here we report a study of water clustering on a moiré-structured iron oxide thin film with a controlled density of hydroxyl groups. While large amorphous monolayer islands form on the bare film, the hydroxylated iron oxide film acts as a hydrophilic nanotemplate, causing the formation of a regular array of ice-like hexameric nanoclusters. The formation of this ordered phase is localized at the nanometre scale; with increasing water coverage, ordered and amorphous water are found to coexist at adjacent hydroxylated and hydroxyl-free domains of the moiré structure.

5.
J Am Chem Soc ; 133(28): 10692-5, 2011 Jul 20.
Article in English | MEDLINE | ID: mdl-21707081

ABSTRACT

The reduction of a single-layer FeO film grown on Pt(111) by CO at elevated pressures and temperatures has been studied through an interplay of scanning tunneling microscopy, ambient-pressure X-ray photoelectron spectroscopy, and density functional theory calculations. Exposure of the FeO thin film to CO at pressures between 1 and 30 Torr and temperatures between 500 and 530 K leads to formation of a honeycomb-structured Fe(3)O(2) film with hollow sites occupied by single Pt atoms extracted from the substrate surface. The formation of these adatoms is driven by an increase in CO adsorption energy. In addition, the structure incorporates undercoordinated Fe centers, which are proposed to have substantial effects on the catalytic properties of the surface.

SELECTION OF CITATIONS
SEARCH DETAIL
...