Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 29(60): 90219-90229, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35864405

ABSTRACT

This study was designed to evaluate the potential therapeutic efficacy of vitamin D (Vit D) in averting the harmful effects of type 2 diabetes mellitus (T2D). Forty male Wistar rats were allotted into four groups: (1) the control, (2) Vit D, (3) streptozotocin (STZ), and (4) STZ + Vit D groups. Rats co-treated with Vit D had significantly (p < 0.05) decreased levels of cortisol; proinflammatory cytokines, including interleukin-6 (IL-6); and malondialdehyde (MDA). Meanwhile, the levels of insulin significantly (p < 0.05) increased, whereas the activity of the antioxidant system, including glutathione (GSH), superoxide dismutase (SOD), catalase, and total antioxidant capacity (TAC), significantly (p < 0.05) decreased. Histopathological examination revealed the destruction of beta cells in the islets of Langerhans in rats with diabetes. Meanwhile, immunoexpression revealed an increase in the immunoreactivity of caspase-3 and endothelial nitric oxide synthase and a reduction in the immunoreactivity of insulin in rats with diabetes. In conclusion, Vit D ameliorated the harmful biochemical impact of diabetes mellitus, probably by increasing insulin secretion and sensitivity, ameliorating ß-cell function, and decreasing cortisol levels; also, the anti-inflammatory effect of Vit D reduces the number of proinflammatory cytokines (e.g., IL-6) and increases the activity of the antioxidant system, such as GSH, SOD, TAC, and catalase while reducing lipid peroxidation enzymes (e.g., MDA).


Subject(s)
Diabetes Mellitus, Type 2 , Insulin , Vitamin D , Animals , Male , Rats , Apoptosis , Diabetes Mellitus, Type 2/chemically induced , Diabetes Mellitus, Type 2/drug therapy , Interleukin-6 , Oxidative Stress , Rats, Wistar , Vitamin D/pharmacology
2.
J Biochem Mol Toxicol ; 35(4): e22716, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33484087

ABSTRACT

This study investigated the potential mechanism(s) and the signaling pathway(s) underlying the prophylactic effect of proanthocyanidin extract (PE) against doxorubicin (DOX)-induced cardiotoxicity in rats. A total of 32 male albino rats were randomly allocated into four groups. Control rats were orally administrated normal saline. Rats in the second group were orally administrated PE (50 mg/kg bw/once daily) for 4 weeks. Rats in the third group were intraperitoneally injected with DOX (10 mg/kg on Days 3, 9, 15, and 21 of the experiment). Rats in the fourth group were injected with DOX and PE simultaneously for 4 weeks. DOX significantly augmented the levels of serum heart damage biomarkers. In addition, histopathology indicated that DOX-induced cardiac tissue injury upregulated the expression of fibrogenic factors, alpha smooth muscle actin (α-SMA), transforming growth factor ß1 (TGF- ß1), and p16INK4A . Downregulation of cell proliferation markers, cyclin-dependent kinase-4 (CDK4), and retinoblastoma (Rb) was also observed. Furthermore, DOX-induced oxidative and inflammatory stress resulted in increased cardiac malondialdehyde (MDA), protein carbonyl (PC), interleukin-2 (IL-2), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α). Decreased cardiac glutathione (GSH) levels and enzyme activity of catalase (CAT), superoxide dismutase (SOD), and glutathione S-transferase (GST) were observed. Treatment of DOX-induced rat cardiotoxicity with PE normalized serum parameters for the aforementioned parameters and alleviated cardiac tissue structure. Furthermore, reduced cardiac tissue α-SMA and TGF-ß1, and increased CDK4 and Rb protein expression, along with the amelioration of oxidative and inflammatory effects were observed. PE attenuates DOX-induced cardiomyocyte inflammation possibly by attenuating the nuclear factor kappa-B (NF- kB) signaling pathway. These results indicate that PE may be useful as a preventative agent against DOX-induced cardiac toxicity.


Subject(s)
Cell Cycle/drug effects , Doxorubicin/adverse effects , Heart Injuries , NF-kappa B/metabolism , Oxidative Stress/drug effects , Proanthocyanidins/pharmacology , Signal Transduction/drug effects , Animals , Doxorubicin/pharmacology , Fibrosis , Gene Expression Regulation/drug effects , Heart Injuries/chemically induced , Heart Injuries/drug therapy , Heart Injuries/metabolism , Male , Muscle Proteins/biosynthesis , Myocardium/metabolism , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...