Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Bot ; 59(9): 2371-8, 2008.
Article in English | MEDLINE | ID: mdl-18467324

ABSTRACT

Fusarium head blight (FHB; scab), primarily caused by Fusarium graminearum, is a devastating disease of wheat worldwide. FHB causes yield reductions and contamination of grains with trichothecene mycotoxins such as deoxynivalenol (DON). The genetic variation in existing wheat germplasm pools for FHB resistance is low and may not provide sufficient resistance to develop cultivars through traditional breeding approaches. Thus, genetic engineering provides an additional approach to enhance FHB resistance. The objectives of this study were to develop transgenic wheat expressing a barley class II chitinase and to test the transgenic lines against F. graminearum infection under greenhouse and field conditions. A barley class II chitinase gene was introduced into the spring wheat cultivar, Bobwhite, by biolistic bombardment. Seven transgenic lines were identified that expressed the chitinase transgene and exhibited enhanced Type II resistance in the greenhouse evaluations. These seven transgenic lines were tested under field conditions for percentage FHB severity, percentage visually scabby kernels (VSK), and DON accumulation. Two lines (C8 and C17) that exhibited high chitinase protein levels also showed reduced FHB severity and VSK compared to Bobwhite. One of the lines (C8) also exhibited reduced DON concentration compared with Bobwhite. These results showed that transgenic wheat expressing a barley class II chitinase exhibited enhanced resistance against F. graminearum in greenhouse and field conditions.


Subject(s)
Chitinases/metabolism , Fusarium/physiology , Genetic Engineering , Immunity, Innate , Plant Diseases/microbiology , Triticum/immunology , Triticum/microbiology , Chitinases/genetics , Gene Expression , Hordeum/enzymology , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/immunology , Plants, Genetically Modified/microbiology , Triticum/genetics
2.
Plant Cell Rep ; 26(4): 479-88, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17103001

ABSTRACT

Fusarium head blight (FHB) of wheat, caused by Fusarium graminearum and other Fusarium species, is a major disease problem for wheat production worldwide. To combat this problem, large-scale breeding efforts have been established. Although progress has been made through standard breeding approaches, the level of resistance attained is insufficient to withstand epidemic conditions. Genetic engineering provides an alternative approach to enhance the level of resistance. Many defense response genes are induced in wheat during F. graminearum infection and may play a role in reducing FHB. The objectives of this study were (1) to develop transgenic wheat overexpressing the defense response genes alpha-1-purothionin, thaumatin-like protein 1 (tlp-1), and beta-1,3-glucanase; and (2) to test the resultant transgenic wheat lines against F. graminearum infection under greenhouse and field conditions. Using the wheat cultivar Bobwhite, we developed one, two, and four lines carrying the alpha-1-purothionin, tlp-1, and beta-1,3-glucanase transgenes, respectively, that had statistically significant reductions in FHB severity in greenhouse evaluations. We tested these seven transgenic lines under field conditions for percent FHB disease severity, deoxynivalenol (DON) mycotoxin accumulation, and percent visually scabby kernels (VSK). Six of the seven lines differed from the nontransgenic parental Bobwhite line for at least one of the disease traits. A beta-1,3-glucanase transgenic line had enhanced resistance, showing lower FHB severity, DON concentration, and percent VSK compared to Bobwhite. Taken together, the results showed that overexpression of defense response genes in wheat could enhance the FHB resistance in both greenhouse and field conditions.


Subject(s)
Fusarium/growth & development , Plant Diseases/genetics , Triticum/genetics , Blotting, Southern , Blotting, Western , Glucan 1,3-beta-Glucosidase/genetics , Glucan 1,3-beta-Glucosidase/metabolism , Plant Diseases/microbiology , Plants, Genetically Modified , Reverse Transcriptase Polymerase Chain Reaction , Transformation, Genetic , Triticum/metabolism , Triticum/microbiology
3.
Mol Plant Pathol ; 7(1): 47-59, 2006 Jan 01.
Article in English | MEDLINE | ID: mdl-20507427

ABSTRACT

SUMMARY Fungal-induced inaccessibility in oat to Blumeria graminis requires active cell processes. These are reiterative de novo cell processes involved in inherent penetration resistance. Therefore, induced inaccessibility may well involve cellular memory of the initial attack. Phenylpropanoid biosynthesis inhibitors (AOPP and OH-PAS) and phosphate scavengers (DDG and d-mannose) strongly suppressed induced inaccessibility, but silicon nutrition had no effect. Induced accessibility was modulated by the presence of fungal haustoria inside cells. Haustoria actively suppress or reprogram infected plant cells toward a constant state of penetration susceptibility. Neither inhibitor treatments nor silicon nutrition affected fungal-induced accessibility.

SELECTION OF CITATIONS
SEARCH DETAIL
...