Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 433(7025): 495-8, 2005 Feb 03.
Article in English | MEDLINE | ID: mdl-15690033

ABSTRACT

Recent cosmological measurements indicate that baryons comprise about four per cent of the total mass-energy density of the Universe, which is in accord with the predictions arising from studies of the production of the lightest elements. It is also in agreement with the actual number of baryons detected at early times (redshifts z > 2). Close to our own epoch (z < 2), however, the number of baryons detected add up to just over half (approximately 55 per cent) of the number seen at z > 2 (refs 6-11), meaning that about approximately 45 per cent are 'missing'. Here we report a determination of the mass-density of a previously undetected population of baryons, in the warm-hot phase of the intergalactic medium. We show that this mass density is consistent, within the uncertainties, with the mass density of the missing baryons.

2.
Nature ; 421(6924): 719-21, 2003 Feb 13.
Article in English | MEDLINE | ID: mdl-12610618

ABSTRACT

The number of baryons detected in the low-redshift (z < 1) Universe is far smaller than the number detected in corresponding volumes at higher redshifts. Simulations of the formation of structure in the Universe show that up to two-thirds of the 'missing' baryons may have escaped detection because of their high temperature and low density. One of the few ways to detect this matter directly is to look for its signature in the form of ultraviolet absorption lines in the spectra of background sources such as quasars. Here we show that the amplitude of the average velocity vector of 'high velocity' O vi (O5+) absorption clouds detected in a survey of ultraviolet emission from active galactic nuclei decreases significantly when the vector is transformed to the frames of the Galactic Standard of Rest and the Local Group of galaxies. At least 82 per cent of these absorbers are not associated with any 'high velocity' atomic hydrogen complex in our Galaxy, and are therefore likely to result from a primordial warm-hot intergalactic medium pervading an extended corona around the Milky Way or the Local Group. The total mass of baryons in this medium is estimated to be up to approximately 10(12) solar masses, which is of the order of the mass required to dynamically stabilize the Local Group.

3.
Science ; 299(5605): 365-7, 2003 Jan 17.
Article in English | MEDLINE | ID: mdl-12532009

ABSTRACT

The physical nature of ultraluminous x-ray sources is uncertain. Stellar-mass black holes with beamed radiation and intermediate black holes with isotropic radiation are two plausible explanations. We discovered radio emission from an ultraluminous x-ray source in the dwarf irregular galaxy NGC 5408. The x-ray, radio, and optical fluxes as well as the x-ray spectral shape are consistent with beamed relativistic jet emission from an accreting stellar black hole. If confirmed, this would suggest that the ultraluminous x-ray sources may be stellar-mass rather than intermediate-mass black holes. However, interpretation of the source as a jet-producing intermediate-mass black hole cannot be ruled out at this time.

SELECTION OF CITATIONS
SEARCH DETAIL
...