Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Magn Reson Med ; 92(1): 430-439, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38411265

ABSTRACT

PURPOSE: Electron spin resonance (ESR) is used to measure oxygen partial pressure (pO2) in biological media with many clinical applications. Traditional clinical ESR involves large magnets that encompass the subject of measurement. However, certain applications might benefit from a scanner operating within local static magnetic fields. Our group recently developed such a compact scanner for transcutaneous (surface) pO2 measurements of skin tissue. Here we extend this capability to subsurface (subcutaneous) pO2 measurements and verify it using an artificial tissue emulating (ATE) phantom. METHODS: We introduce a new scanner, tailored for subcutaneous measurements up to 2 mm beneath the skin's surface. This scanner captures pulsed ESR signals from embedded approximate 1-mm oxygen-sensing solid paramagnetic implant, OxyChip. The scanner features a static magnetic field source, producing a uniform region outside its surface, and a compact microwave resonator, for exciting and receiving ESR signals. RESULTS: ESR readings derived from an OxyChip, positioned approximately 1.5 mm from the scanner's surface, embedded in ATE phantom, exhibited a linear relation of 1/T2 versus pO2 for pO2 levels at 0, 7.6, 30, and 160 mmHg, with relative reading accuracy of about 10%. CONCLUSION: The compact ESR scanner can report pO2 data in ATE phantom from an external position relative to the scanner. Implementing this scanner in preclinical and clinical applications for subcutaneous pO2 measurements is a feasible next phase for this development. This innovative design also has the potential to operate in conjunction with artificial skin graft for wound healing, combining therapeutic and pO2 diagnostic features.


Subject(s)
Oximetry , Oxygen , Phantoms, Imaging , Electron Spin Resonance Spectroscopy , Oximetry/methods , Humans , Equipment Design , Skin/diagnostic imaging
2.
Sci Adv ; 8(49): eade6527, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36475787

ABSTRACT

Amplification of weak microwave signals with minimal added noise is of importance to science and technology. Artificial quantum systems, based on superconducting circuits, can now amplify and detect even single microwave photons. However, this requires operating at millikelvin temperatures. Natural quantum systems can also be used for low-noise microwave amplification using stimulated emission effects; however, they generate a higher noise, especially when operating above ~1 K. Here, we demonstrate the use of electron spins in diamond as a quantum microwave amplifier operating with quantum-limited internal noise, even above liquid nitrogen temperatures. We report on the amplifier's design, gain, bandwidth, saturation power, and noise. This capability can lead the way to previously unavailable quantum science, engineering, and physics applications.

3.
Anal Chem ; 90(13): 7830-7836, 2018 07 03.
Article in English | MEDLINE | ID: mdl-29856211

ABSTRACT

Electron spin resonance (ESR) is a powerful analytical technique used for the detection, quantification, and characterization of paramagnetic species ranging from stable organic free radicals and defects in crystals to gaseous oxygen. Traditionally, ESR requires the use of complex instrumentation, including a large magnet and a microwave resonator in which the sample is placed. Here, we present an alternative to the existing approach by inverting the typical measurement topology, namely placing the ESR magnet and resonator inside the sample rather than the other way around. This new development relies on a novel self-contained ESR sensor with a diameter of just 2 mm and length of 3.6 mm, which includes both a small permanent magnet assembly and a tiny (∼1 mm in size) resonator for spin excitation and detection at a frequency of ∼2.6 GHz. The spin sensitivity of the sensor has been measured to be ∼1011 spins/√Hz, and its concentration sensitivity is ∼0.1 mM, using reference samples with a measured volume of just ∼10 nL. Our new approach can be applied for monitoring the partial pressure of oxygen in vitro and in vivo through its paramagnetic interaction with another stable radical, as well as for simple online quantitative inspection of free radicals generated in reaction vessels and electrochemical cells via chemical processes.


Subject(s)
Electron Spin Resonance Spectroscopy/instrumentation , Equipment Design , Magnets
SELECTION OF CITATIONS
SEARCH DETAIL
...