Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 7(10): e47012, 2012.
Article in English | MEDLINE | ID: mdl-23056560

ABSTRACT

WNT7A (wingless-type MMTV integration site family, member 7A) is a known tumor suppressor gene of non-small cell lung carcinomas (NSCLC) and is frequently inactivated due to CpG-island hypermethylation in human cancers. The members of WNT family are involved in cell signaling and play crucial roles in cancer development. In the present work hypermethylation of the WNT7A gene was detected in 66% (29/44) of analyzed clear cell renal cell carcinomas (RCCs) using methyl-specific PCR (MSP). Moreover, bisulfite sequencing confirmed intensive hypermethylation of the 5'-CpG island of the WNT7A gene. Methylation analysis revealed positive correlations between tumor stage, Fuhrman nuclear grade and WNT7A hypermethylation. Additionally, restoration of WNT7A gene expression in the A498 cell line by 5-aza-2'-deoxycytidine treatment confirmed a direct contribution of hypermethylation in silencing of the WNT7A gene. High frequency of loss of heterozygosity (LOH) was demonstrated on chromosome 3p25 in regions surrounding the WNT7A gene. The frequent down-regulation of WNT7A gene expression was detected in 88% (15/17) of clear cell RCCs. We have also shown that the WNT7A gene possesses tumor suppression function by colony-formation and cell proliferation assays in RCC cell lines. In summary, the WNT7A gene is inactivated by genetic/epigenetic alterations in clear cell RCC and demonstrates tumor suppressor properties.


Subject(s)
Carcinoma, Renal Cell/genetics , Wnt Proteins/genetics , Adult , Aged , Azacitidine/analogs & derivatives , Azacitidine/pharmacology , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , DNA Methylation/drug effects , DNA Methylation/genetics , Decitabine , Down-Regulation/drug effects , Down-Regulation/genetics , Epigenesis, Genetic/drug effects , Epigenesis, Genetic/genetics , Female , Genetic Markers/genetics , Humans , Loss of Heterozygosity/drug effects , Loss of Heterozygosity/genetics , Male , Microsatellite Repeats/genetics , Middle Aged , Young Adult
2.
Cancer Lett ; 265(2): 250-7, 2008 Jul 08.
Article in English | MEDLINE | ID: mdl-18378390

ABSTRACT

FHIT is a tumour suppressor gene which is frequently inactivated in different types of cancer. Both genetic (mutations, deletions, chromosomal rearrangements) and epigenetic (aberrant methylation of the 5'CpG island) alterations of the FHIT gene have been reported in various malignancies. Yet little is known about the mechanism of FHIT inactivation in clear cell renal carcinomas. Since genetic alterations were not frequently observed in DNA corresponding to the FHIT gene in renal tumours, to elucidate the mechanism of FHIT gene silencing we examined 22 paired samples of clear cell renal carcinoma and non-malignant renal tissue for the methylation of the FHIT 5'CpG island by methylation-specific PCR. Hypermethylation of the FHIT 5'CpG island was detected in 54.5% (12/22) of clear cell renal carcinomas. Bisulfite sequencing of the FHIT 5'CpG island confirmed the results obtained by methylation-specific PCR for selected samples. We showed here that expression of the FHIT gene is inversely correlated with hypermethylation of the FHIT 5'CpG island in the selected samples. Our results suggest that hypermethylation of the FHIT 5'CpG island may be responsible for inactivation of the FHIT gene in clear cell renal carcinomas.


Subject(s)
Acid Anhydride Hydrolases/genetics , Carcinoma, Renal Cell/genetics , CpG Islands , DNA Methylation , Kidney Neoplasms/genetics , Neoplasm Proteins/genetics , Adult , Aged , Base Sequence , Female , Humans , Male , Middle Aged , Molecular Sequence Data
SELECTION OF CITATIONS
SEARCH DETAIL
...