Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Rapid Commun Mass Spectrom ; 38(15): e9769, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38782757

ABSTRACT

RATIONALE: Succinic acid and lactic acid have been associated with diarrhea in weaned piglets. The level of succinic acid and lactic acid in serum, meat, and intestinal contents is important to elucidate the mechanism of diarrhea in weaned piglets. METHODS: A facile method was developed for the quantification of succinic acid and lactic acid in pigs' serum, intestinal contents, and meat using ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC/MS/MS). The serum samples underwent protein precipitation with methanol. The meat and intestinal contents were freeze-dried and homogenized using a tissue grinding apparatus. Methanol-water mixture (80:20, v/v) was used for homogenizing the meat, while water was used for homogenizing the intestinal contents. An additional step of protein precipitation with acetonitrile was required for the intestinal contents. The resulting solution was diluted with water before being analyzed by UHPLC/MS/MS. Separation of succinic acid and lactic acid could be achieved within 3 min using a Kinetic XB-C18 column. RESULTS: The coefficients of variation for peak areas of succinic acid and lactic acid were less than 5.0%. The established method demonstrated good linearity as indicated by correlation coefficients exceeding 0.996. Additionally, satisfactory recoveries ranging from 88.58% to 108.8% were obtained. The detection limits (RS/N = 3) for succinic acid and lactic acid were determined to be 0.75 ng/mL and 0.02 µg/mL, respectively. CONCLUSION: This method exhibited high sensitivity, simplicity in operation, and small sample weight, making it suitable for quantitative determination of succinic acid and lactic acid in pigs' serum, intestinal contents, and meat. The method developed will provide valuable technical support in studying the metabolic mechanisms of succinic acid and lactic acid in pigs.


Subject(s)
Lactic Acid , Succinic Acid , Tandem Mass Spectrometry , Animals , Tandem Mass Spectrometry/methods , Lactic Acid/blood , Lactic Acid/analysis , Chromatography, High Pressure Liquid/methods , Swine , Succinic Acid/blood , Succinic Acid/analysis , Succinic Acid/chemistry , Meat/analysis , Reproducibility of Results , Limit of Detection , Linear Models
2.
Animals (Basel) ; 14(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38672341

ABSTRACT

Phosphatidylethanolamine (PE), a multifunctional phospholipid, is necessary for neonate development. This study aimed to explore the impact of the regulation of exogenous PE on postnatal growth retardation (PGR) by improving intestinal barrier function. Thirty-two neonatal pigs were divided into four groups according to their body weight (BW 2.79 ± 0.50 kg or 1.88 ± 0.40 kg) at 7 days old, CON-NBW, PE-NBW, CON-PGR, and PE-PGR. PE was supplemented to NBW piglets and PGR piglets during lactation and post-weaning periods. Compared with the NBW piglets, the growth performance of PGR piglets was lower, while PE improved the poor growth performance. PGR piglets showed injured intestinal morphology, as evidenced by the reduced ratio of villus height to crypt depth (VH/CD) and goblet cell numbers in the jejunum and ileum. PE recovered the intestinal barrier injury by increasing VH/CD and goblet cell numbers. The decreased MUC2 mRNA and protein expressions were observed in the small intestine of PGR piglets, and PE remarkably increased the expression of MUC2. Mechanistically, PE increased the goblet cell differentiation promoting gene spdef mRNA levels and reduced the mRNA expressions involved in endoplasmic reticulum stress in the jejunal and ileal mucosa of PGR piglets. Overall, we found that PE alleviated growth retardation by regulating intestinal health and generalized its application in neonates.

3.
Anim Nutr ; 17: 25-35, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38464952

ABSTRACT

Trimethylamine oxide (TMAO) is a microbiota-derived metabolite, and numerous studies have shown that it could regulate fat metabolism in humans and mice. However, few studies have focused on the effects of TMAO on fat deposition in growing-finishing pigs. This study aimed to investigate the effect of TMAO on fat deposition and intestinal microbiota in growing-finishing pigs. Sixteen growing pigs were randomly divided into 2 groups and fed with a basal diet with 0 or 1 g/kg TMAO for 149 d. The intestinal microbial profiles, fat deposition indexes, and fatty acid profiles were measured. These results showed that TMAO supplementation had a tendency to decrease lean body mass (P < 0.1) and significantly increased backfat thickness (P < 0.05), but it did not affect growth performance. TMAO significantly increased total protein (TP) concentration, and reduced alkaline phosphatase (ALP) concentration in serum (P < 0.05). TMAO increased the α diversity of the ileal microbiota community (P < 0.05), and it did not affect the colonic microbial community. TMAO supplementation significantly increased acetate content in the ileum, and Proteobacteria and Escherichia-Shigella were significantly enriched in the TMAO group (P < 0.05). In addition, TMAO decreased fat content, as well as the ratio of linoleic acid, n-6 polyunsaturated fatty acids (PUFA), and PUFA in the liver (P < 0.05). On the contrary, TMAO increased intramuscular fat content of the longissimus dorsi muscle, whereas the C18:2n6c ratio was increased, and the n-6 PUFA:PUFA ratio was decreased (P < 0.05). In vitro, 1 mM TMAO treatment significantly upregulated the expression of FASN and SREBP1 in C2C12 cells (P < 0.05). Nevertheless, TMAO also increased adipocyte area and decreased the CPT-1B expression in subcutaneous fat (P < 0.05). Taken together, TMAO supplementation regulated ileal microbial composition and acetate production, and regulated fat distribution and fatty acid composition in growing-finishing pigs. These results provide new insights for understanding the role of TMAO in humans and animals.

4.
J Sci Food Agric ; 104(4): 2262-2271, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-37947497

ABSTRACT

BACKGROUND: Diquat is a common environmental pollutant, which can cause oxidative stress in humans and animals. Diquat exposure causes growth retardation and intestinal damage. Therefore, this study was performed to investigate the effects of melatonin on diquat-challenged piglets. RESULTS: Dietary supplementation with 2 mg kg-1 melatonin significantly increased the average daily gain and feed conversion rate in piglets. Melatonin increased antioxidant capacity, and improved intestinal epithelial barrier function of duodenum and jejunum in piglets. Moreover, melatonin was found to regulated the expression of immune and antioxidant-related genes. Melatonin also alleviated diquat-induced growth retardation and anorexia in diquat-challenged piglets. It also increased antioxidant capacity, and ameliorated diquat-induced intestinal epithelial barrier injury. Melatonin also regulated the expression of MnSOD and immuner-elated genes in intestinal. CONCLUSION: Dietary supplementation with 2 mg kg-1 melatonin increased antioxidant capacity to ameliorate diquat-induced oxidative stress, alleviate intestinal epithelial barrier injury, and increase growth performance in weaned piglets. © 2023 Society of Chemical Industry.


Subject(s)
Antioxidants , Melatonin , Humans , Animals , Swine , Antioxidants/pharmacology , Antioxidants/metabolism , Diquat/adverse effects , Melatonin/pharmacology , Dietary Supplements , Growth Disorders
5.
Front Vet Sci ; 10: 1294095, 2023.
Article in English | MEDLINE | ID: mdl-38026634

ABSTRACT

Abnormal hepatic energy metabolism limits the growth and development of piglets. We hypothesized that ß-hydroxybutyrate (BHB) might improve the growth performance of piglets by maintaining hepatic caloric homeostasis. A total of 30 litters of newborn piglets were tracked, and 30 postnatal growth retardation (PGR) piglets and 40 healthy piglets were selected to treat with normal saline with or without BHB (25 mg/kg/days) at 7-d-old. At the age of 42 days, 8 piglets in each group were sacrificed, and serum and liver were collected. Compared with the healthy-control group piglets, PGR piglets showed lower body weight (BW) and liver weight (p < 0.05), and exhibited liver injury and higher inflammatory response. The contents of serum and hepatic BHB were lower (p < 0.05), and gene expression related to hepatic ketone body production were down-regulated in PGR piglets (p < 0.05). While BHB treatment increased BW and serum BHB levels, but decreased hepatic BHB levels in PGR piglets (p < 0.05). BHB alleviated the liver injury by inhibiting the apoptosis and inflammation in liver of PGR piglets (p < 0.05). Compared with the healthy-control group piglets, liver glycogen content and serum triglyceride level of PGR piglets were increased (p < 0.05), liver gluconeogenesis gene and lipogenesis gene expression were increased (p < 0.05), and liver NAD+ level was decreased (p < 0.05). BHB supplementation increased the ATP levels in serum and liver (p < 0.05), whereas decreased the serum glucose, cholesterol, triglyceride and high-density lipoprotein cholesterol levels and glucose and lipid metabolism in liver of PGR piglets (p < 0.05). Therefore, BHB treatment might alleviate the liver injury and inflammation, and improve hepatic energy metabolism by regulating glucose and lipid metabolism, thereby improving the growth performance of PGR piglets.

6.
Ecotoxicol Environ Saf ; 264: 115448, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37696080

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) is a common diarrheal pathogen in humans and animals. To prevent and treat ETEC induced diarrhea, we synthesized mannan oligosaccharide selenium (MOSS) and studied its beneficial effect on ETEC-induced diarrhea. A total of 32 healthy weaned piglets (6.69 ± 0.01 kg) were randomly divided into four groups: NC group (Basal diet), MOSS group (0.4 mg/kg MOSS supplemented diet), MOET group (0.4 mg/kg MOSS supplemented diet + ETEC treatment), ETEC group (ETEC treatment). NC and ETEC group fed with basal diet, MOSS and MOET group fed with the MOSS supplemented diet. On the 8th and 15th day of the experiment, MOET and ETEC group were gavaged with ETEC, and NC and MOSS group were gavaged with stroke-physiological saline solution. Our data showed that dietary MOSS supplementation increased average daily gain (ADG) and average daily feed intake (ADFI) and significantly decreased diarrhea index and frequency in ETEC-treated piglets. MOSS did not affect the α diversity and ß diversity of ileal microbial community, but it significantly decreased the proportion of lipopolysaccharide biosynthesis in ileal microbial community. MOSS supplementation regulated colonic microbiota community composition, which significantly increased carbohydrate metabolism, and inhibited lipopolysaccharide biosynthesis pathway in colonic microbial community. Moreover, MOSS significantly decreased inflammatory stress, and oxidative stress in ETEC treated piglets. Furthermore, dietary MOSS supplementation significantly decreased intestinal barrier permeability, and alleviated ETEC induced intestinal mucosa barrier irritation. In conclusion, our study showed that dietary MOSS supplementation ameliorated intestinal mucosa barrier, and regulated intestinal microbiota to prevent ETEC induced diarrhea in weaned piglets.


Subject(s)
Enterotoxigenic Escherichia coli , Escherichia coli Infections , Gastrointestinal Microbiome , Selenium , Animals , Diarrhea/prevention & control , Diarrhea/veterinary , Escherichia coli Infections/prevention & control , Escherichia coli Infections/veterinary , Intestinal Mucosa , Lipopolysaccharides , Mannans/pharmacology , Mannans/therapeutic use , Selenium/pharmacology , Swine
7.
Food Chem Toxicol ; 177: 113863, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37257635

ABSTRACT

Mycotoxins, especially deoxynivalenol (DON), are common contaminants of food and feed, which also has serious threaten to human health and livestock production. Moreover, DON severely impair intestinal epithelial barrier function. Therefore, it is necessary to investigate the mechanism of intestinal epithelial cell injury induced by DON. Here, intestinal porcine enterocyte cell (IPEC-J2) was incubated with 200 ng/ml or 2000 ng/ml DON for 6 h, then lncRNA sequencing, metabolomics and proteomics were applied. Combined with long coding transcriptomics, and proteomics, 200 ng/ml DON treatment (LDON group) significantly upregulated ribosome biogenesis in eukaryotes, spliceosome, and ubiquitin mediated proteolysis, RNA transport, and downregulated metabolic pathways in IPEC-J2, 2000 ng/ml of DON treatment (HDON group) significantly upregulated ribosome biogenesis in eukaryotes, and spliceosome, and downregulated base excision repair, cell cycle, DNA replication, homologous recombination, and mismatch repair in IPEC-J2. Combined with long coding transcriptomics, and proteomics, as compared with LDON group, HDON group significantly upregulated adherens junction, hippo signaling pathway, and pathways in cancer, and downregulated DNA replication pathways in IPEC-J2. In metabolomics, LDON group and HDON group was mainly downregulated biosynthesis of unsaturated fatty acids, and fatty acid metabolism. These results provide a new insight to prevent and treat DON induced intestinal epithelial cell injury.


Subject(s)
RNA, Long Noncoding , Humans , Animals , Swine , RNA, Long Noncoding/metabolism , Cell Line , Proteomics , Transcriptome , Epithelial Cells/metabolism , Metabolomics
8.
J Sci Food Agric ; 103(11): 5569-5577, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37071083

ABSTRACT

BACKGROUND: Overuse of antibiotics contributes to bacterial resistance in animals. Therefore, it is necessary to find a new way to ensure animal health and promote animal growth. This experiment was conducted to investigate the effect of mannan oligosaccharide (MOS)/vitamin E (VE)/attapulgite (APT) nanocomposites (SLK1, SLK3, SLK5) on growth performance and intestinal health in weaned piglets. Each 1 kg of SLK1, SLK3 or SLK5 contains 50 g of vitamin E, and each had a different MOS concentration [SLK1 (50 g kg -1 MOS), SLK3 (100 g kg -1 MOS), SLK5 (150 g kg -1 MOS)]. In total, 135 piglets were randomly divided into five groups (normal control group, traditional antibiotic substitutes group, SLK1 group, SLK3 group and SLK5 group), and growth performance, diarrhea index, intestinal epithelial barrier function and intestinal microbial composition were measured. RESULTS: SLK1 and SLK5 significantly decreased diarrhea frequency in weaned piglets (p < 0.05). Furthermore, SLK5 significantly increased survival rate of weaned piglets compared to the traditional antibiotic substitutes group (p < 0.05). SLK5 also increased villus height of ileum, and increased goblet number of the jejunum (p < 0.05). 16S rRNA sequencing showed that SLK5 significantly regulated intestinal colonic microbiota composition (p < 0.05). Specifically, SLK5 significantly increased the abundance of Phascolarctobacterium succinatutens in the cecum and increased the abundance of Lactobacillus and Bifidobacterium in the colon (p < 0.05). In addition, dietary supplementation with 1 kg T-1 SLK5 also significantly increased the propionate content in the colon, which is significantly correlated with Phascolarctobacterium (p < 0.05). CONCLUSION: Dietary supplementation with 1 kg T-1 SLK5 improved intestinal epithelial barrier function, and regulated intestinal microbiota composition to prevent diarrhea in weaned piglets. © 2023 Society of Chemical Industry.


Subject(s)
Gastrointestinal Microbiome , Nanocomposites , Animals , Anti-Bacterial Agents/pharmacology , Diarrhea/prevention & control , Diarrhea/veterinary , Dietary Supplements/analysis , Mannans , Oligosaccharides/pharmacology , RNA, Ribosomal, 16S , Swine , Vitamin E/pharmacology , Weaning
9.
Int Immunopharmacol ; 117: 109742, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36822096

ABSTRACT

Attapulgite is a kind of natural clay mineral. Its unique pore structure makes it an ideal adsorption material and carrier material. However, the beneficial effect of modified attapulgites (SLK) in livestock is still unknown. The study was aimed to investigate the beneficial effect of modified attapulgites on diarrhea. 135 piglets were randomly divided into 5 groups and fed with control diet, traditional antibiotic substitute (TAS) supplementation diet, 0.5 mg/kg SLK supplementation diet, 1 mg/kg SLK supplementation diet, and 1.5 mg/kg SLK supplementation diet. This experiment lased two weeks. According to our result, 1.5 mg/kg SLK supplementation diet significantly decreased diarrhea score and diarrhea frequency, and effectively increased survival rate (P < 0.05). Dietary supplementation with 1.5 mg/kg SLK significantly increased high density lipoprotein cholesterol (HDLC), and choline esterase (CHE) concentration in serum (P < 0.05). AS compared with TAS group, 1.5 mg/kg SLK supplementation diet significantly decreased villus height and increased goblet number in jejunum, and increased villus height and decreased goblet number in ileum (P < 0.05). 1.5 mg/kg SLK supplementation diet also significantly changed cecal microbial community composition, including increased Limosilactobacillus abundance (P < 0.05). 1.5 mg/kg SLK supplementation diet significantly increased colonic microbial community composition, including decreased Escherichia-shigella abundance and increased Limosilactobacillus abundance (P < 0.05). Moreover, 1.5 mg/kg SLK supplementation diet significantly increased valerate, propionate, butyrate, and total short chain fatty acid contents in colon (P < 0.05). Valerate, propionate, butyrate, and total short chain fatty acid significantly associated with Lactobacillus. Fourerenilla and Fourerenilla.unclassfied significantly associated with acetate contents in colon (P < 0.05). In conclusion, dietary supplementation with modified apptapulgites significantly regulate intestinal microbial community composition and alleviate intestinal epithelial barrier to prevent diarrhea in piglets.


Subject(s)
Dietary Supplements , Gastrointestinal Microbiome , Animals , Butyrates/pharmacology , Diarrhea/prevention & control , Dietary Supplements/analysis , Propionates/pharmacology , Swine , Valerates/pharmacology , Weaning
10.
Front Vet Sci ; 9: 938888, 2022.
Article in English | MEDLINE | ID: mdl-35847640

ABSTRACT

Weaning stress induces the depressed digestive and absorptive capacity and insufficient intestinal energy supply. Medium-chain fatty acid glycerides have shown to improve the growth performance and intestinal barrier function of weaned piglets in the previous study. This study was aimed to investigate the regulation of medium-chain fatty acid glyceride on the nutrient absorption and energy utilization of weaned piglets. Nighty healthy weaned piglets were randomly assigned into five treatments: NP (Normal protein, normal-protein diet no antibiotics included); NC (Negative control, low-protein diet no antibiotics included); PC (Positive control, low-protein diet +75 mg/kg quinocetone, 20 mg/kg virginiamycin and 50 mg/kg aureomycin); MCT (tricaprylin + tricaprin group, low-protein diet + tricaprylin + tricaprin); GML (glycerol monolaurate group, low-protein diet + glycerol monolaurate). The results showed that GML treatment increased the ALP activity, concentrations of serine and methionine, MCT treatment increased concentrations of serine and 3-methyl-histidine but decreased TG concentration in serum. MCT and GML supplementations significantly promoted the lipase activity in the jejunum and ileum, as well as the AMP content in the ileal mucosa. GML addition significantly decreased the contents of butyric acid, isobutyric acid and total volatile fatty acid. In addition, medium chain fatty acid glycerides altered gene expressions involved in lipid metabolism, which showing the increases of AMPK2, CD36 and CGI58 and the decreases of MGAT2 and DGAT2 in the liver, as well as the increases of CD36, CGI58, MGAT2 and DGAT2 in the subcutaneous adipose tissue. These findings showed that medium-chain fatty acid glyceride can effectively improve the absorption of nutrients and lipid metabolism of piglets to meet the energy demand of weaned piglets, and then regulate the growth and development of weaned piglets.

11.
Crit Rev Food Sci Nutr ; 62(18): 4867-4892, 2022.
Article in English | MEDLINE | ID: mdl-33523720

ABSTRACT

Growth retardation (GR), which commonly occurs in childhood, is a major health concern globally. However, the specific mechanism remains unclear. It has been increasingly recognized that changes in the gut microbiota may lead to GR through affecting the microbiota-gut-brain axis. Microbiota interacts with multiple factors such as birth to affect the growth of individuals. Microbiota communicates with the nerve system through chemical signaling (direct entry into the circulation system or stimulation of enteroendocrine cells) and nervous signaling (interaction with enteric nerve system and vagus nerve), which modulates appetite and immune response. Besides, they may also influence the function of enteric glial cells or lymphocytes and levels of systemic inflammatory cytokines. Environmental stress may cause leaky gut through perturbing the hypothalamic-pituitary-adrenal axis to further result in GR. Nutritional therapies involving probiotics and pre-/postbiotics are being investigated for helping the patients to overcome GR. In this review, we summarize the role of microbiota in GR with human and animal models. Then, existing and potential regulatory mechanisms are reviewed, especially the effect of microbiota-gut-brain axis. Finally, we propose nutritional therapeutic strategies for GR by the intervention of microbiota-gut-brain axis, which may provide novel perspectives for the treatment of GR in humans and animals.


Subject(s)
Hypothalamo-Hypophyseal System , Microbiota , Animals , Brain/physiology , Brain-Gut Axis , Growth Disorders , Pituitary-Adrenal System
12.
Environ Pollut ; 293: 118572, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34838710

ABSTRACT

Paraquat, a widely used herbicide, causes environmental pollution, and liver injury in humans and animals. As a natural compound in fruits, ellagic acid (EA) shows anti-inflammatory and antioxidant effects. This study examines the beneficial effects of dietary EA against the paraquat-induced hepatic injury and further explores the underlying molecular mechanisms using a piglet model. Post-weaning piglets are fed basal diet supplemented with 50 mg/kg, 100 mg/kg, or 200 mg/kg EA for 3 weeks. At week 2, hepatic injury is induced by 4 mg/kg paraquat followed by 7 days recovery. EA supplementation significantly mitigates paraquat-induced hepatic fibrosis, steatosis, and high apoptotic rate. In agreement, EA supplementation reduces serum pro-inflammatory levels, ameliorates inflammatory cells infiltration into hepatic tissue, which are associated with suppressed NF-κB signaling during paraquat exposure. In addition, EA supplementation significantly improves activities of antioxidative enzymes which were correlated with activated Nrf2/Keap 1 signaling during paraquat exposure. Furthermore, EA supplementation restores cecal microbial community during paraquat exposure. The protective effect of EA is strongly linked with increased relative abundance of Lactobacillus reuteri and Lactobacillus amylovorus. Taken together, EA supplementation effectively reduced the occurrence of hepatic oxidative damage and inflammation induced by paraquat through modulating cecal microbial communities, which provides a novel nutritional therapeutic strategy for hepatic injury.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Gastrointestinal Microbiome , Animals , Ellagic Acid/pharmacology , Humans , Paraquat/toxicity , Swine
13.
J Cachexia Sarcopenia Muscle ; 13(1): 677-695, 2022 02.
Article in English | MEDLINE | ID: mdl-34811946

ABSTRACT

BACKGROUND: Gut health plays a vital role in the overall health and disease control of human and animals. Intestinal oxidative stress is a critical player in the induction and progression of cachexia which is conventionally diagnosed and classified by weight loss. Therefore, reduction of intestinal oxidative injury is a common and highly effective strategy for the maintenance of human and animal health. Here we identify intestinal myeloid differentiation primary response gene 88 (MyD88) as a novel target for intestinal oxidative stress using canonical oxidative stress model induced by paraquat (PQ) in vitro and in vivo. METHODS: Intestinal oxidative stress was induced by administration of PQ in intestinal epithelial cells (IECs) and mouse model. Cell proliferation, apoptosis, DNA damage, mitochondrial function, oxidative status, and autophagy process were measured in wild-type and MyD88-deficient IECs during PQ exposure. Autophagy inhibitor (3-methyladenine) and activator (rapamycin) were employed to assess the role of autophagy in MyD88-deficient IECs during PQ exposure. MyD88 specific inhibitor, ST2825, was used to verify function of MyD88 during PQ exposure in mouse model. RESULTS: MyD88 protein levels and apoptotic rate of IECs are increased in response to PQ exposure (P < 0.001). Intestinal deletion of MyD88 blocks PQ-induced apoptosis (~42% reduction) and DNA damage (~86% reduction), and improves mitochondrial fission (~37% reduction) and function including mitochondrial membrane potential (~23% increment) and respiratory metabolism capacity (~26% increment) (P < 0.01). Notably, there is a marked decrease in reactive oxygen species in MyD88-deficient IECs during PQ exposure (~70% reduction), which are consistent with high activity of antioxidative enzymes (~83% increment) (P < 0.001). Intestinal ablation of MyD88 inhibits mTOR signalling, and further phosphorylates p53 proteins during PQ exposure, which eventually promotes intestinal autophagy (~74% increment) (P < 0.01). Activation of autophagy (rapamycin) promotes IECs growth as compared with 3-methyladenine-treatment during PQ exposure (~173% increment), while inhibition of autophagy (3-methyladenine) exacerbates oxidative stress in MyD88-deficient IECs (P < 0.001). In mouse model, inhibition of MyD88 using specific inhibitor ST2825 followed by PQ treatment effectively ameliorates weight loss (~4% increment), decreased food intake (~92% increment), gastrocnemius and soleus loss (~24% and ~20% increment, respectively), and intestinal oxidative stress in an autophagy dependent manner (P < 0.01). CONCLUSIONS: MyD88 modulates intestinal oxidative stress in an autophagy-dependent mechanism, which suggests that reducing MyD88 level may constitute a putative therapeutic target for intestinal oxidative injury-induced weight loss.


Subject(s)
Autophagy , Oxidative Stress , Animals , Mice , Myeloid Differentiation Factor 88/genetics , Paraquat/pharmacology , Primary Immunodeficiency Diseases , Weight Loss
14.
Front Nutr ; 8: 738281, 2021.
Article in English | MEDLINE | ID: mdl-34692749

ABSTRACT

This study aimed to investigate the beneficial effect of baicalin-zinc complex (BZN) on intestinal microorganisms in deoxynivalenol (DON)-challenged piglets and the association between intestinal microorganisms and host immunity and hormone secretion. Forty weaned piglets were randomly divided into four treatments with 10 piglets in each treatment: (1) control (Con) group (pigs fed basal diet); (2) DON group (pigs fed 4 mg DON/kg basal diet); (3) BZN group (pigs fed 0.5% BZN basal diet); and (4) DBZN group (pigs fed 4 mg DON/kg and 0.5% BZN basal diet). The experiment lasted for 14 days. The BZN supplementation in DON-contaminated diets changed the intestinal microbiota composition and increased intestinal microbial richness and diversity of piglets. The BZN supplementation in DON-contaminated diets also alleviated the inflammatory responses of piglets and modulated the secretion of hormones related to the growth axis. Moreover, microbiota composition was associated with inflammatory and hormone secretion. In conclusion, BZN alleviated inflammatory response and hormone secretion in piglets, which is associated with the intestinal microbiome.

15.
Biomed Res Int ; 2020: 1475831, 2020.
Article in English | MEDLINE | ID: mdl-33062668

ABSTRACT

To study the effect of functional amino acids and the antioxidant function compound package on Huanjiang minipigs and to lay a foundation for the formulation of green and efficient feed for Huanjiang minipigs, we added functional amino acids and the antioxidant function compound package to piglet feed for 28 days. After feeding, we detected the growth performance, biochemical indexes, inflammatory indexes, and intestinal disaccharidase of piglets. It was found that functional amino acids and the antioxidant compound package had certain effects on the growth performance and biochemical indexes of piglets and could reduce the level of IL-6 and increase the level of LZM and SIgA of piglets, and the levels of lactase and maltase in the intestine also increased significantly. The results showed that the compound package of functional amino acids and antioxidation could improve the growth performance and immunity of piglets and promote the digestion and absorption of nutrients in piglets.


Subject(s)
Amino Acids , Antioxidants , Digestion/drug effects , Intestinal Mucosa , Amino Acids/administration & dosage , Amino Acids/pharmacology , Animal Feed , Animals , Antioxidants/administration & dosage , Antioxidants/pharmacology , Body Weight/drug effects , Cytokines/blood , Dietary Supplements , Eating/drug effects , Inflammation/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/enzymology , Intestinal Mucosa/metabolism , Swine , Swine, Miniature
16.
Animals (Basel) ; 10(10)2020 Oct 12.
Article in English | MEDLINE | ID: mdl-33053685

ABSTRACT

Medium-chain fatty acid glycerides have been shown to provide energy for rapid oxidation in the body. The study was conducted to investigate the effects of dietary supplementation with medium-chain fatty acid glyceride on the growth performance and intestinal health of weaned piglets fed with a low-protein diet. Nighty healthy weaned piglets were randomly divided into five treatments: NP (Normal protein treatment, normal-protein diet no antibiotics included); NC (Negative control, low-protein diet no antibiotics included); PC (Positive control, low-protein diet +75 mg/kg quinocetone, 20 mg/kg virginiamycin and 50 mg/kg aureomycin); MCT (tricaprylin + tricaprin treatment, low-protein diet + tricaprylin + tricaprin); GML (glycerol monolaurate treatment, low-protein diet + glycerol monolaurate). The results showed that the average daily feed intake (ADFI) of the MCT treatment was significantly higher than that of the NP, NC treatments (p < 0.05). In the jejunum, the villus height of the GML treatment was significantly lower than that of the PC treatment (p < 0.05), and the number of goblet cells in the GML treatment was higher than that in the NC treatment (p < 0.05). Compared with the NC treatment, the MCT treatment significantly increased the level of claudin-1, Zonula occludens-1(ZO-1), while the GML treatment significantly increased the level of claudin-1, occludin, ZO-1 (p < 0.05). In the ileum, the level of ZO-1 in the GML treatment was significantly higher than that in the NP, NC, PC treatments (p < 0.05). Compared with the NC treatment, the GML treatment significantly increased the level of Secretory immunoglobulin A (SIgA) in the ileum and serum, while the MCT treatment significantly increased the level of SIgA and decreased the level of interleukin-6 (IL-6) in the ileum (p < 0.05). These results showed that the addition of medium-chain fatty acid glycerides to a low-protein diet could improve the growth performance and intestinal functional barrier of weaned piglets and also improve the immune function of weaned piglets.

17.
Animals (Basel) ; 10(9)2020 Aug 31.
Article in English | MEDLINE | ID: mdl-32878107

ABSTRACT

The present experiment assessed the inflammatory responses, hormone secretion, and gut microbiota of weanling piglets administered baicalin-copper complex (BCU) or deoxynivalenol (DON) supplementation diets. Twenty-eight piglets were randomly assigned to four groups: control diet (Con group), a 4 mg DON/kg diet (DON group), a 5 g BCU/kg diet (BCU group), a 5 g BCU + 4 mg DON/kg diet (DBCU group). After 14 days, the results showed that dietary BCU supplementation remarkably increased the relative abundance of Clostrium bornimense and decreased the relative abundance of Lactobacillus in the DBCU group (p < 0.05). BCU decreased the serum concentration of IgG, IL-2, IFN-γ, and IgA in DON treated piglets (p < 0.05), and promoted the serum concentration of IL-1ß, IgG, IL-2, IFN-γ, IgA, IL-6, IgM, and TNFα in normal piglets (p < 0.05). BCU increased the concentrations of serum IGF1, insulin, NPY, GLP-1, and GH, and decreased the concentrations of serum somatostatin in no DON treated piglets (p < 0.05). Dietary BCU supplementation significantly promoted the secretion of somatostatin, and inhibited the secretion of leptin in piglets challenged with DON (p < 0.05). BCU regulated the expression of food intake-related genes in the hypothalamus and pituitary of piglets. Collectively, dietary BCU supplementation alleviated inflammatory responses and regulated the secretion of appetite-regulating hormones and growth-axis hormones in DON challenged piglets, which was closely linked to changes of intestinal microbes.

18.
Oxid Med Cell Longev ; 2020: 9834813, 2020.
Article in English | MEDLINE | ID: mdl-32587664

ABSTRACT

We investigated the effects of rapamycin (RAPA) and chloroquine (CQ) in supporting growth performance and the intestinal mucosal barrier in response to deoxynivalenol (DON) in piglets. A total of 32 healthy weaned piglets (bodyweight 7.10 ± 0.58 kg) were divided into four groups and treated daily with RAPA (1 mg/kg BW), CQ (10 mg/kg BW), or a control volume of normal saline (two groups) until the end of the experiment. After feeding a basal diet for seven days, three groups were then switched to mildewed feed containing 1 mg kg/DON for a further seven days. In contrast to the control group, DON-treated piglets showed decreased average daily gain (ADG) and daily feed intake (ADFI), as well as negatively affected intestinal morphology as indicated by villus height, crypt depth, and tight junction protein expression. A group treated with RAPA and DON showed increased intestinal autophagy, aggravated inflammatory responses, and damage to the intestinal mucosa and permeability, leading to reduced growth performance. Meanwhile, a group treated with CQ and DON showed indices comparable to the non-DON control group, with alleviated inflammatory cytokines and healthy intestinal morphology and structure. They also showed better growth performance compared to DON treatment alone. These findings have important implications for mediating autophagy against DON in vivo, as well as the potential for CQ in improving growth performance and maintaining intestinal barrier integrity in weanling piglets.


Subject(s)
Chloroquine/pharmacology , Inflammation/pathology , Intestinal Mucosa/pathology , Trichothecenes/toxicity , Amine Oxidase (Copper-Containing)/blood , Animals , Antioxidants/metabolism , Autophagy/drug effects , Cadherins/genetics , Cadherins/metabolism , Cytokines/blood , Cytokines/genetics , Cytokines/metabolism , Diet , Inflammation/blood , Integrins/genetics , Integrins/metabolism , Lactic Acid/blood , Occludin/genetics , Occludin/metabolism , Proliferating Cell Nuclear Antigen/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sirolimus/pharmacology , Swine , Zonula Occludens-1 Protein/genetics , Zonula Occludens-1 Protein/metabolism
19.
Curr Drug Metab ; 21(8): 614-625, 2020.
Article in English | MEDLINE | ID: mdl-32116187

ABSTRACT

BACKGROUND: Deoxynivalenol contamination is increasing worldwide, presenting great challenges to food security and causing great economic losses in the livestock industry. OBJECTIVE: This study was conducted to determine the protective effect of baicalin zinc as a dietary supplement on pigs fed with a deoxynivalenol contaminated diet. METHODS: A total of 40 weaned pigs (21 d of age; 6.13 ± 0.42 kg average BW) were randomly assigned (10 pigs/group) to 4 dietary treatments: basal diet (Con group), basal diet + 4 mg/kg DON (DON group), basal diet + 5 g/kg BZN (BZN group), and basal diet + 5 g/kg BZN + 4 mg/kg DON (DBZN group) for a 14-d period. Seven randomly-selected pigs from each treatment were killed for blood and tissue sampling. RESULTS: The results showed that piglets challenged with DON exhibited significantly reduced levels of ADG, ADFI, and F/G (p < 0.05). BZN supplemented diets significantly suppressed the protein expression of p-Nrf2, p-NF-kB, and HO-1 in the jejunum of DON challenged piglets (p < 0.05). In liver, DON markedly increased the mRNA expression of P70S6K and HSP70 in piglets fed the basal diet, but significantly reduced that of HO-1, NQO-1, NF-kB, AMPKα2 and HSP70 in piglets fed the BZN supplemented diet (p < 0.05). Dietary supplementation with BZN markedly increased the T-AOC level of serum in weaned piglets (p < 0.05). In jejunum, dietary supplementation with BZN activated the mRNA expression of ZIP4 in piglets (p < 0.05), BZN supplementation significantly suppressed the activity of sucrose and increased the protein concentration in chyme (p < 0.05). CONCLUSION: BZN can play a protective role by reducing oxidative stress and enhancing nutrient absorption in pigs fed DON-contaminated diets.


Subject(s)
Animal Feed/toxicity , Flavonoids/pharmacology , Trichothecenes/toxicity , Zinc/chemistry , Animals , Dietary Supplements , Flavonoids/chemistry , Food Contamination , Nutrients/metabolism , Oxidative Stress/drug effects , Random Allocation , Sucrose/metabolism , Swine
20.
Oxid Med Cell Longev ; 2020: 5363546, 2020.
Article in English | MEDLINE | ID: mdl-32064026

ABSTRACT

The present study was performed to evaluate the antioxidant and intestinal protective effects of baicalin-copper on deoxynivalenol-challenged piglets. Forty weaned piglets were randomly divided into four groups and assigned to different diets: (1) basal diet (Con), (2) 4 mg/kg deoxynivalenol of basal diet (DON), (3) 5 g/kg baicalin-copper of basal diet (BCU); and (4) 4 mg/kg deoxynivalenol + 5 g/kg baicalin-copper of basal diet (DBCU). The results showed that the ADFI and ADG of piglets in the DON group were markedly lower than those in the Con group, but the ADFI and ADG of the DBCU group were not significantly different from those of the Con group. In piglets fed a DON-contaminated diet, dietary supplementation with BCU significantly decreased the mRNA levels of P70S6K, 4E-BP1, and HSP70 in the liver, the protein expression of HO-1 in the jejunum, and the expression of p-Nrf2 and p-NF-κB in the ileum but increased Mn-SOD activity in serum. Dietary supplementation with BCU increased jejunal maltase, ZIP4 and MT mRNA levels, and serum concentrations of Arg, Val, Ile, Leu, Lys, and Tyr in DON-contaminated piglets. In summary, BCU can alleviate the growth impairment induced by DON and enhance antioxidant capacity and nutrition absorption in piglets fed DON-contaminated diets.


Subject(s)
Antioxidants/metabolism , Flavonoids/pharmacology , Ileum/drug effects , Jejunum/drug effects , Oxidative Stress/drug effects , Trichothecenes/toxicity , Amino Acids/blood , Animal Feed , Animals , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Copper/chemistry , Diet , Dietary Supplements , Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factor-4E/metabolism , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Ileum/metabolism , Jejunum/cytology , Jejunum/enzymology , Jejunum/metabolism , Liver/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Oxidative Stress/genetics , Ribosomal Protein S6 Kinases, 70-kDa/genetics , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Serum/enzymology , Serum/metabolism , Superoxide Dismutase-1/blood , Swine , alpha-Glucosidases/genetics , alpha-Glucosidases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...