Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 48(21): 5779-5782, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37910757

ABSTRACT

Two-field driving is the ultimate goal of field sequential color liquid crystal displays (FSC-LCDs) because it requires the lowest refresh rate and transmission bandwidth in addition to the intrinsic advantages of FSC-LCDs, e.g., tripled light efficiency and spatial resolution. However, fewer fields create a more significant challenge in controlling color breakup and distortion, as well as higher computational complexity in calculating LC signals. Regarding the difficulties, we propose a two-field FSC driving method that synchronously generates backlight and LC signals through two lightweight neural networks. The runtimes of the two networks are as fast as 1.23 and 1.79 ms per frame on a GeForce RTX 3090Ti graphic card, fully supporting real-time driving. Next, an over-partitioning approach is proposed to overcome the cross talk between backlight segments while processing high-resolution images. Besides the real-time feature, a reduction of 14.88% in color breakup concerning current methods and low distortion are verified. We also provide our open-source code.

2.
Opt Express ; 25(3): 1778-1788, 2017 Feb 06.
Article in English | MEDLINE | ID: mdl-29519031

ABSTRACT

The inhomogeneous broadening of the bi-exciton state in quantum dots, i.e., the inhomogeneous broadening of the upper level of the cascade process, is not only a fundamental problem in quantum dots, but also closely related with the coherent control of this complex system and the quality of the entangled photon pairs, especially the time-bin entangled photon pairs. This inhomogeneous broadening is inherently a two-photon correlated phenomenon. In this work, we construct a genuine Franson-type nonlocal interference process to measure the inhomogeneous broadening of the bi-exciton state. The results show that the inhomogeneous broadening of the bi-exciton state is considerably smaller than that of the exciton state, that is why the entangled photon pairs can be generated by the cascade process in the quantum dot.

3.
Sci Rep ; 6: 26680, 2016 05 26.
Article in English | MEDLINE | ID: mdl-27225881

ABSTRACT

Quantum emitters generating individual entangled photon pairs (IEPP) have significant fundamental advantages over schemes that suffer from multiple photon emission, or schemes that require post-selection techniques or the use of photon-number discriminating detectors. Quantum dots embedded within nanowires (QD-NWs) represent one of the most promising candidate for quantum emitters that provide a high collection efficiency of photons. However, a quantum emitter that generates IEPP in the telecom band is still an issue demanding a prompt solution. Here, we demonstrate in principle that IEPPs in the telecom band can be created by combining a single QD-NW and a nonlinear crystal waveguide. The QD-NW system serves as the single photon source, and the emitted visible single photons are split into IEPPs at approximately 1.55 µm through the process of spontaneous parametric down conversion (SPDC) in a periodically poled lithium niobate (PPLN) waveguide. The compatibility of the QD-PPLN interface is the determinant factor in constructing this novel hybrid-quantum-emitter (HQE). Benefiting from the desirable optical properties of QD-NWs and the extremely high nonlinear conversion efficiency of PPLN waveguides, we successfully generate IEPPs in the telecom band with the polarization degree of freedom. The entanglement of the generated photon pairs is confirmed by the entanglement witness. Our experiment paves the way to producing HQEs inheriting the advantages of multiple systems.

4.
Nat Commun ; 6: 8652, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26468996

ABSTRACT

Quantum repeaters are critical components for distributing entanglement over long distances in presence of unavoidable optical losses during transmission. Stimulated by the Duan-Lukin-Cirac-Zoller protocol, many improved quantum repeater protocols based on quantum memories have been proposed, which commonly focus on the entanglement-distribution rate. Among these protocols, the elimination of multiple photons (or multiple photon-pairs) and the use of multimode quantum memory are demonstrated to have the ability to greatly improve the entanglement-distribution rate. Here, we demonstrate the storage of deterministic single photons emitted from a quantum dot in a polarization-maintaining solid-state quantum memory; in addition, multi-temporal-mode memory with 1, 20 and 100 narrow single-photon pulses is also demonstrated. Multi-photons are eliminated, and only one photon at most is contained in each pulse. Moreover, the solid-state properties of both sub-systems make this configuration more stable and easier to be scalable. Our work will be helpful in the construction of efficient quantum repeaters based on all-solid-state devices.

5.
Nanotechnology ; 26(38): 385706, 2015 Sep 25.
Article in English | MEDLINE | ID: mdl-26334185

ABSTRACT

The realization of fiber-output single photon sources is necessary for quantum photonics. Here we present in situ probing and integration of single self-assembled quantum dots (QDs)-in-nanowires. Single self-assembled AlGaAs QDs were synthesized in GaAs/AlGaAs core-shell nanowires by molecular beam epitaxy and characterized by optical excitation in both micro-PL and fiber-integrating set-up. Cascaded biexciton-exciton emission with a saturation signal of 1000 counts per second at nitrogen temperature is achieved through the fiber-integrating setup, which makes single mode fibers an ideal candidate for single photons sources and paves the way for the realization of 'all fiber' devices. Numerical calculations were carried out to illustrate the collection efficiency and polarized photoluminescence characteristics. Extraction efficiencies as high as 70% over a broadband emission are reported and increase by a factor of about seven in comparison with air extraction, due to the larger refractive index of the fiber core.

6.
Nanoscale Res Lett ; 10: 11, 2015.
Article in English | MEDLINE | ID: mdl-25852309

ABSTRACT

Fabrication of advanced artificial nanomaterials is a long-term pursuit to fulfill the promises of nanomaterials and it is of utter importance to manipulate materials at nanoscale to meet urgent demands of nanostructures with designed properties. Herein, we demonstrate the morphological tailoring of self-assembled nanostructures on faceted GaAs nanowires (NWs). The NWs are deposited on different kinds of substrates. Triangular and hexagonal prism morphologies are obtained, and their corresponding {110} sidewalls act as platforms for the nucleation of gallium droplets (GDs). We demonstrate that the morphologies of the nanostructures depend not only on the annealing conditions but also on the morphologies of the NWs' sidewalls. Here, we achieve morphological engineering in the form of novel quantum dots (QDs), 'square' quantum rings (QRs), 'rectangular' QRs, 3D QRs, crescent-shaped QRs, and nano-antidots. The evolution mechanisms for the peculiar morphologies of both NWs and nanostructures are modeled and discussed in detail. This work shows the potential of combining nano-structural engineering with NWs to achieve multifunctional properties and applications.

7.
Adv Mater ; 26(17): 2710-7, 2616, 2014 May.
Article in English | MEDLINE | ID: mdl-24677451

ABSTRACT

Two types of quantum nanostructures based on self-assembled GaAs quantumdots embedded into GaAs/AlGaAs hexagonal nanowire systems are reported, opening a new avenue to the fabrication of highly efficient single-photon sources, as well as the design of novel quantum optics experiments and robust quantum optoelectronic devices operating at higher temperature, which are required for practical quantum photonics applications.

8.
Nanoscale ; 6(6): 3190-6, 2014 Mar 21.
Article in English | MEDLINE | ID: mdl-24500118

ABSTRACT

Single nanostructures embedded within nanowires (NWs) represent one of the most promising technologies for applications in quantum photonics. However, fabrication imperfections and etching-induced defects are inevitable for top-down fabrications, whereas self-assembly bottom-up approaches cannot avoid the difficulties of its stochastic nature and are limited to restricted heterogeneous material systems. Here we demonstrate the versatile self-assembly of single "square" quantum rings (QR) on the sidewalls of gold-free GaAs NWs for the first time. By tuning the deposition temperature, As overpressure and amount of gallium-droplets, we were able to control the density and morphology of the structure, yielding novel single quantum dots, QR, coupled QRs, and nano-antidots. A proposed model based on a strain-driven, transport-dependent nucleation of gallium droplets at high temperature accounts for the formation mechanism of these structures. We achieved a single-QR-in-NW structure, of which the optical properties were analyzed using micro-photoluminescence at 10 K and a spatially resolved cathodoluminescence technique at 77 K. The spectra show sharp discrete peaks; of these peaks, the narrowest linewidth (separation) was 578 µeV (1-3 meV), reflecting the quantized nature of the ring-type electronic states.

9.
Nano Lett ; 13(4): 1399-404, 2013 Apr 10.
Article in English | MEDLINE | ID: mdl-23464836

ABSTRACT

We report a new type of single InAs quantum dot (QD) embedded at the junction of gold-free branched GaAs/AlGaAs nanowire (NW) grown on silicon substrate. The photoluminescence intensity of such QD is ~20 times stronger than that from randomly distributed QD grown on the facet of straight NW. Sharp excitonic emission is observed at 4.2 K with a line width of 101 µeV and a vanishing two-photon emission probability of g(2)(0) = 0.031(2). This new nanostructure may open new ways for designing novel quantum optoelectronic devices.


Subject(s)
Nanostructures/chemistry , Nanotechnology , Nanowires/chemistry , Quantum Dots , Arsenicals/chemistry , Equipment Design , Gallium/chemistry , Indium/chemistry , Silicon
SELECTION OF CITATIONS
SEARCH DETAIL
...