Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 70(18): 5715-5727, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35475606

ABSTRACT

During the enzymatic oxidation of black tea, flavan-3-ols undergo a complicated chemical transformation and generate theaflavins and thearubigins. So far, the oxidation mechanism of flavan-3-ols has not been clarified. Liquid chromatography-tandem mass spectrometry-based metabolomics combined with o-quinone intermediates captured by o-phenylenediamine was developed and successfully applied in the liquid incubation of fresh tea homogenates. During the oxidation, the contents of catechins continuously decreased, while theaflavins increased first but decreased subsequently at the end of incubation. Meanwhile, the content of thearubigins greatly increased at the late stage of incubation. Dehydrotheasinensins were accumulated at the end of oxidation along with the decrease of theasinensins. Through o-phenylenediamine derivation, several adducts of (-)-epigallocatechin gallate, (-)-epigallocatechin, theasinensins A, B, C, and D, and corresponding dehydrotheasinensins were identified, which were considered as the substrates of thearubigins. These results suggested that theaflavins and these oxidation products contributed to the formation of thearubigins.


Subject(s)
Catechin , Antioxidants , Catechin/chemistry , Chromatography, Liquid , Flavonoids/chemistry , Mass Spectrometry/methods , Metabolomics , Phenylenediamines , Polyphenols/chemistry , Quinones , Tea/chemistry
2.
Front Nutr ; 9: 825381, 2022.
Article in English | MEDLINE | ID: mdl-35284442

ABSTRACT

The peel of Citrus reticulata "Chachi" (CP) possesses various health-promoting benefits and is not only one of the most famous Chinese herbal medicine, but also an ingredient in fermented foods. In the present study, the effects of storage years (1-, 3-, 4-, 5-, 6-, and 11-years) on the chemical profiling and potential bioactive compounds of CP were compared by metabolomics and in vitro bioactivity analysis. With the increase of storage time, the content of hesperidin significantly decreased, but nobiletin, 3,5,6,7,8,3',4'-heptamethoxyflavone, and tangeretin were increased. Meanwhile, the antioxidant activity of CP was enhanced. Phenolic acids, flavonol glycosides, fatty acids, and alkyl glycosides were marker compounds that were responsible for distinguishing the storage time of CP. Correlation analysis suggested that some polyphenols including quercetin-glucoside, quinic acid, trihydroxydimethoxyflavone, and rutin were potential antioxidant compounds in CP. The dichloromethane and n-butanol fractions showed the better antioxidant capacity and inhibitory effects on glucose-hydrolysis enzymes. They mainly contained ferulic acid, nobiletin, 3,5,6,7,8,3',4'-heptamethoxyflavone, kaempferol, and hesperidin.

3.
Food Chem ; 359: 129950, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-33945989

ABSTRACT

The black tea could be stored for a long time, and subsequently affects the flavor characteristics. In the present study, the effects of storage years (1, 2, 3, 4, 5, 10, 17 and 20 years) on the chemical profiling and taste quality of keemun black tea (KBT) were compared by metabolomics and quantitative sensory evaluation. The main polyphenols were degraded during the storing, especially 10-year storage, but caffeine and theobromine were stable. The intensity of bitterness, astringency, umami was negatively correlated to storage years, with correlation coefficient at -0.95, -0.91 and -0.83 respectively, whereas sweetness had positive correlation coefficient at 0.74. Quinic acid, galloylated catechins, linolenic acid, linoleic acid, malic acid, palamitic acid, and theaflavin-3́-gallate were marker compounds which were responsible for distinguishing short and long time preserved KBT. The contents of fatty acids were positively correlated to storage time and sweet intensity.


Subject(s)
Metabolomics , Tea/chemistry , Astringents/analysis , Biflavonoids , Caffeine/analysis , Catechin , Gallic Acid/analogs & derivatives , Polyphenols/analysis , Quinic Acid/analysis , Taste
SELECTION OF CITATIONS
SEARCH DETAIL
...