Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 353, 2023 01 07.
Article in English | MEDLINE | ID: mdl-36611126

ABSTRACT

Head and neck cancer is the sixth most common malignancy, and there is an urgent need to identify physiological processes contributing to tumorigenesis. Extracellular acidification caused by aerobic glycolysis within tumor microenvironments can stimulate proton-sensing receptors. GPR68, or ovarian cancer G protein-coupled receptor 1, responds to extracellular acidity and is highly expressed in head and neck squamous cell carcinoma (HNSCC) as well as normal esophageal tissue. To study the role of GPR68 in oral dysplasia, wild-type and GPR68-/- mice were treated with 4-Nitroquinoline N-oxide (4NQO) in drinking water for 11-13 weeks, followed by normal water for 11-12 weeks. 4NQO treatment resulted in 45 percent of GPR68-/- mice developing severe dysplasia or squamous cell carcinoma compared to only 10.5 percent of GPR68+/+ mice. This correlated with increased frequencies of regulatory T cells in the spleens of male GPR68-/- mice. Dysplastic regions of the tongue had increased CD31 staining compared to normal regions in both GPR68-/- and GPR68+/+ mice, suggesting that angiogenesis was GPR68-independent. RNA knockdown studies using HNSCC cell lines demonstrated no direct effect of GPR68 on survival or growth. Overall, we demonstrate that GPR68-deficiency worsens the severity of chemical-induced oral dysplasia, suggesting a protective role for this gene in tumorigenesis.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Male , Mice , Animals , Squamous Cell Carcinoma of Head and Neck , Carcinoma, Squamous Cell/pathology , Carcinogenesis/pathology , 4-Nitroquinoline-1-oxide/toxicity , Cell Transformation, Neoplastic , Head and Neck Neoplasms/chemically induced , Head and Neck Neoplasms/genetics , Hyperplasia , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Tumor Microenvironment
2.
J Cereb Blood Flow Metab ; 42(8): 1349-1363, 2022 08.
Article in English | MEDLINE | ID: mdl-35301897

ABSTRACT

Extracellular proton concentration is at 40 nM when pH is 7.4. In disease conditions such as brain ischemia, proton concentration can reach µM range. To respond to this increase in extracellular proton concentration, the mammalian brain expresses at least three classes of proton receptors. Acid-sensing ion channels (ASICs) are the main neuronal cationic proton receptor. The proton-activated chloride channel (PAC), which is also known as (aka) acid-sensitive outwardly rectifying anion channel (ASOR; TMEM206), mediates acid-induced chloride currents. Besides proton-activated channels, GPR4, GPR65 (aka TDAG8, T-cell death-associated gene 8), and GPR68 (aka OGR1, ovarian cancer G protein-coupled receptor 1) function as proton-sensitive G protein-coupled receptors (GPCRs). Though earlier studies on these GPCRs mainly focus on peripheral cells, we and others have recently provided evidence for their functional importance in brain injury. Specifically, GPR4 shows strong expression in brain endothelium, GPR65 is present in a fraction of microglia, while GPR68 exhibits predominant expression in brain neurons. Here, to get a better view of brain acid signaling and its contribution to ischemic injury, we will review the recent findings regarding the differential contribution of proton-sensitive GPCRs to cerebrovascular function, neuroinflammation, and neuronal injury following acidosis and brain ischemia.


Subject(s)
Brain Ischemia , Protons , Acid Sensing Ion Channels/metabolism , Animals , Hydrogen-Ion Concentration , Mammals/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction
3.
Front Neurosci ; 15: 692217, 2021.
Article in English | MEDLINE | ID: mdl-34113235

ABSTRACT

Persistent acidosis occurs in ischemia and multiple neurological diseases. In previous studies, acidic stimulation leads to rapid increase in intracellular calcium in neurons. However, it remains largely unclear how a prolonged acidosis alters neuronal signaling. In our previous study, we found that GPR68-mediated PKC activities are protective against acidosis-induced injury in cortical slices. Here, we first asked whether the same principle holds true in organotypic hippocampal slices. Our data showed that 1-h pH 6 induced PKC phosphorylation in a GPR68-dependent manner. Go6983, a PKC inhibitor worsened acidosis-induced neuronal injury in wild type (WT) but had no effect in GPR68-/- slices. Next, to gain greater insights into acid signaling in brain tissue, we treated organotypic hippocampal slices with pH 6 for 1-h and performed a kinome profiling analysis by Western blot. Acidosis had little effect on cyclin-dependent kinase (CDK) or casein kinase 2 activity, two members of the CMGC family, or Ataxia telangiectasia mutated (ATM)/ATM and RAD3-related (ATR) activity, but reduced the phosphorylation of MAPK/CDK substrates. In contrast, acidosis induced the activation of CaMKIIα, PKA, and Akt. Besides these serine/threonine kinases, acidosis also induced tyrosine phosphorylation. Since GPR68 is widely expressed in brain neurons, we asked whether GPR68 contributes to acidosis-induced signaling. Deleting GPR68 had no effect on acidosis-induced CaMKII phosphorylation, attenuated that of phospho-Akt and phospho-PKA substrates, while abolishing acidosis-induced tyrosine phosphorylation. These data demonstrate that prolonged acidosis activates a network of signaling cascades, mediated by AGC kinases, CaMKII, and tyrosine kinases. GPR68 is the primary mediator for acidosis-induced activation of PKC and tyrosine phosphorylation, while both GPR68-dependent and -independent mechanisms contribute to the activation of PKA and Akt.

4.
FASEB J ; 35(4): e21461, 2021 04.
Article in English | MEDLINE | ID: mdl-33724568

ABSTRACT

Brain acid signaling plays important roles in both physiological and disease conditions. One key neuronal metabotropic proton receptor in the brain is GPR68, which contributes to hippocampal long-term potentiation (LTP) and mediates neuroprotection in acidotic and ischemic conditions. Here, to gain greater understanding of GPR68 function in the brain, we performed mRNA-Seq analysis in mice. First, we studied sham-operated animals to determine baseline expression. Compared to wild type (WT), GPR68-/- (KO) brain downregulated genes that are enriched in Gene Ontology (GO) terms of misfolding protein binding, response to organic cyclic compounds, and endoplasmic reticulum chaperone complex. Next, we examined the expression profile following transient middle cerebral artery occlusion (tMCAO). tMCAO-upregulated genes cluster to cytokine/chemokine-related functions and immune responses, while tMCAO-downregulated genes cluster to channel activities and synaptic signaling. For proton-sensitive receptors, tMCAO downregulated ASIC1a and upregulated GPR4 and GPR65, but had no effect on ASIC2, PAC, or GPR68. GPR68 deletion did not alter the expression of these proton receptors, either at baseline or after ischemia. Lastly, we performed GeneVenn analysis of differential genes at baseline and post-tMCAO. Ischemia upregulated the expression of three hemoglobin genes, along with H2-Aa, Ppbp, Siglece, and Tagln, in WT but not in KO. Immunostaining showed that tMCAO-induced hemoglobin localized to neurons. Western blot analysis further showed that hemoglobin induction is GPR68-dependent. Together, these data suggest that GPR68 deletion at baseline disrupts chaperone functions and cellular signaling responses and imply a contribution of hemoglobin-mediated antioxidant mechanism to GPR68-dependent neuroprotection in ischemia.


Subject(s)
Brain Ischemia/metabolism , Brain/metabolism , Neuroprotection/physiology , Receptors, G-Protein-Coupled/metabolism , Animals , Disease Models, Animal , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism , Protons , Signal Transduction/physiology , Transcriptome/physiology
6.
Stroke ; 51(12): 3690-3700, 2020 12.
Article in English | MEDLINE | ID: mdl-33059544

ABSTRACT

BACKGROUND AND PURPOSE: Brain acidosis is prevalent in stroke and other neurological diseases. Acidosis can have paradoxical injurious and protective effects. The purpose of this study is to determine whether a proton receptor exists in neurons to counteract acidosis-induced injury. METHODS: We analyzed the expression of proton-sensitive GPCRs (G protein-coupled receptors) in the brain, examined acidosis-induced signaling in vitro, and studied neuronal injury using in vitro and in vivo mouse models. RESULTS: GPR68, a proton-sensitive GPCR, was present in both mouse and human brain, and elicited neuroprotection in acidotic and ischemic conditions. GPR68 exhibited wide expression in brain neurons and mediated acidosis-induced PKC (protein kinase C) activation. PKC inhibition exacerbated pH 6-induced neuronal injury in a GPR68-dependent manner. Consistent with its neuroprotective function, GPR68 overexpression alleviated middle cerebral artery occlusion-induced brain injury. CONCLUSIONS: These data expand our knowledge on neuronal acid signaling to include a neuroprotective metabotropic dimension and offer GPR68 as a novel therapeutic target to alleviate neuronal injuries in ischemia and multiple other neurological diseases.


Subject(s)
Acidosis/metabolism , Brain/metabolism , Infarction, Middle Cerebral Artery/metabolism , Neurons/metabolism , Neuroprotection/genetics , Receptors, G-Protein-Coupled/metabolism , Animals , Humans , Ischemic Stroke/metabolism , Mice , Mice, Knockout , Neuroprotection/physiology , Protein Kinase C/metabolism , Receptors, G-Protein-Coupled/genetics , Reverse Transcriptase Polymerase Chain Reaction
7.
Mol Brain ; 13(1): 132, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32993733

ABSTRACT

Increased neural activities reduced pH at the synaptic cleft and interstitial spaces. Recent studies have shown that protons function as a neurotransmitter. However, it remains unclear whether protons signal through a metabotropic receptor to regulate synaptic function. Here, we showed that GPR68, a proton-sensitive GPCR, exhibited wide expression in the hippocampus, with higher expression observed in CA3 pyramidal neurons and dentate granule cells. In organotypic hippocampal slice neurons, ectopically expressed GPR68-GFP was present in dendrites, dendritic spines, and axons. Recordings in hippocampal slices isolated from GPR68-/- mice showed a reduced fiber volley at the Schaffer collateral-CA1 synapses, a reduced long-term potentiation (LTP), but unaltered paired-pulse ratio. In a step-through passive avoidance test, GPR68-/- mice exhibited reduced avoidance to the dark chamber. These findings showed that GPR68 contributes to hippocampal LTP and aversive fear memory.


Subject(s)
Avoidance Learning/physiology , Gene Deletion , Hippocampus/physiology , Long-Term Potentiation/physiology , Receptors, G-Protein-Coupled/deficiency , Animals , Conditioning, Classical , DNA-Binding Proteins/metabolism , Green Fluorescent Proteins/metabolism , Mice, Transgenic , Nerve Tissue Proteins/metabolism , Presynaptic Terminals/metabolism , Receptors, G-Protein-Coupled/metabolism , Synaptic Transmission
8.
Biomolecules ; 10(9)2020 09 02.
Article in English | MEDLINE | ID: mdl-32887365

ABSTRACT

Acid-sensing ion channel (ASIC) subunits 1a and 3 are highly expressed in central and peripheral sensory neurons, respectively. Endogenous biomolecule zinc plays a critical role in physiological and pathophysiological conditions. Here, we found that currents recorded from heterologously expressed ASIC1a/3 channels using the whole-cell patch-clamp technique were regulated by zinc with dual effects. Co-application of zinc dose-dependently potentiated both peak amplitude and the sustained component of heteromeric ASIC1a/3 currents; pretreatment with zinc between 3 to 100 µM exerted the same potentiation as co-application. However, pretreatment with zinc induced a significant inhibition of heteromeric ASIC1a/3 channels when zinc concentrations were over 250 µM. The potentiation of heteromeric ASIC1a/3 channels by zinc was pH dependent, as zinc shifted the pH dependence of ASIC1a/3 currents from a pH50 of 6.54 to 6.77; whereas the inhibition of ASIC1a/3 currents by zinc was also pH dependent. Furthermore, we systematically mutated histidine residues in the extracellular domain of ASIC1a or ASIC3 and found that histidine residues 72 and 73 in both ASIC1a and ASIC3, and histidine residue 83 in the ASIC3 were responsible for bidirectional effects on heteromeric ASIC1a/3 channels by zinc. These findings suggest that histidine residues in the extracellular domain of heteromeric ASIC1a/3 channels are critical for zinc-mediated effects.


Subject(s)
Acid Sensing Ion Channels/chemistry , Acid Sensing Ion Channels/physiology , Acid Sensing Ion Channels/genetics , Animals , CHO Cells , Cations/metabolism , Cations/pharmacology , Cricetulus , Electric Conductivity , Histidine/chemistry , Histidine/genetics , Hydrogen-Ion Concentration , Mutagenesis, Site-Directed , Patch-Clamp Techniques , Protein Structure, Quaternary/drug effects , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/physiology , Sequence Alignment , Zinc/metabolism , Zinc/pharmacology
9.
Am J Blood Res ; 10(2): 15-21, 2020.
Article in English | MEDLINE | ID: mdl-32411498

ABSTRACT

G protein-coupled receptor 68 (GPR68) is a proton sensor that is activated upon binding to extracellular protons. We have previously found that GPR68 induces a proapoptotic pathway in bone marrow (BM) cells from the patients with myelodysplastic syndromes (MDS) after treated with lenalidomide. However, the function of GPR68 in normal hematopoietic cells remains unclear. With genetic loss of function approach, we found reduced frequency and number of B lymphocytes in the peripheral blood (PB) of whole body Gpr68-/- mice compared to control littermates upon aging. During hematopoietic regeneration, such as in response to fluorouracil (5-FU), we also found reduced frequency and number of B lymphocytes in Gpr68-/- mice compared to wild type mice. Mechanism studies revealed that Gpr68 expression was upregulated in B lymphocytes of BM during aging and in hematopoietic progenitor cells after treatment with 5-FU. In addition, activation of Gpr68 by its activators increased the frequency and number of B lymphocytes. Our studies indicate that Gpr68 expression is upregulated in hematopoietic cells upon aging and during hematopoietic regeneration that ends up with increased number of B lymphocytes.

10.
Mol Neurobiol ; 57(7): 3042-3056, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32458389

ABSTRACT

Acids can disturb the ecosystem of wild animals through altering their olfaction and olfaction-related survival behaviors. It is known that the main olfactory epithelia (MOE) of mammals rely on odorant receptors and type III adenylyl cyclase (AC3) to detect general odorants. However, it is unknown how the olfactory system sense protons or acidic odorants. Here, we show that while the MOE of AC3 knockout (KO) mice failed to respond to an odor mix in electro-olfactogram (EOG) recordings, it retained a small fraction of acid-evoked EOG responses. The acetic acid-induced EOG responses in wild-type (WT) MOE can be dissected into two components: the big component dependent on the AC3-mediated cAMP pathway and the much smaller component not. The small acid-evoked EOG response of the AC3 KOs was blocked by diminazene, an inhibitor of acid-sensing ion channels (ASICs), but not by forskolin/IBMX that desensitize the cAMP pathway. AC3 KO mice lost their sensitivity to detect pungent odorants but maintained sniffing behavior to acetic acid. Immunofluorescence staining demonstrated that ASIC1 proteins were highly expressed in olfactory sensory neurons (OSNs), mostly enriched in the knobs, dendrites, and somata, but not in olfactory cilia. Real-time polymerase chain reaction further detected the mRNA expression of ASIC1a, ASIC2b, and ASIC3 in the MOE. Additionally, mice exhibited reduced preference to attractive objects when placed in an environment with acidic volatiles. Together, we conclude that the mouse olfactory system has a non-conventional, likely ASIC-mediated ionotropic mechanism for acid sensing.


Subject(s)
Acid Sensing Ion Channels/metabolism , Adenylyl Cyclases/metabolism , Olfactory Mucosa/metabolism , Olfactory Receptor Neurons/metabolism , Adenylyl Cyclases/genetics , Animals , Cyclic AMP/metabolism , Mice , Mice, Knockout , Signal Transduction/physiology , Smell/physiology
11.
Brain Hemorrhages ; 1(4): 185-191, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33575546

ABSTRACT

Hemorrhagic transformation (HT) following ischemia is one complication which worsens stroke outcome. During and after ischemia-reperfusion, persistent reduction of brain pH occurs. In a recent study, we found that GPR68 functions as a neuronal proton receptor and mediates a protective pathway in brain ischemia. Here, we asked whether GPR68 contributes HT after ischemia. At 24 hr after transient middle cerebral artery occlusion (tMCAO), 58% of the wild-type (WT) mice exhibited some degrees of mild HT. At 72 hr, 95% of the WT showed HT with 42% exhibited large "parenchymal" type hemorrhage. In the GPR68-/- mice, there was a trend of increase in both the incidence and severity of HT at both time points. Mice with severe hemorrhage exhibited significantly larger infarct than those with no to mild hemorrhage. Next, we compared % infarct of GPR68-/- vs WT based on their HT categories. GPR68 deletion increased % infarct when the HT severity is mild. In contrast, for mice exhibiting large area HT, the two genotypes had no difference in % infarct. These data showed that GPR68-dependent signaling leads to protection when HT is mild.

12.
FASEB J ; 33(9): 10300-10314, 2019 09.
Article in English | MEDLINE | ID: mdl-31211919

ABSTRACT

Patients with nosocomial pneumonia exhibit elevated levels of neurotoxic amyloid and tau proteins in the cerebrospinal fluid (CSF). In vitro studies indicate that pulmonary endothelium infected with clinical isolates of either Pseudomonas aeruginosa, Klebsiella pneumoniae, or Staphylococcus aureus produces and releases cytotoxic amyloid and tau proteins. However, the effects of the pulmonary endothelium-derived amyloid and tau proteins on brain function have not been elucidated. Here, we show that P. aeruginosa infection elicits accumulation of detergent insoluble tau protein in the mouse brain and inhibits synaptic plasticity. Mice receiving endothelium-derived amyloid and tau proteins via intracerebroventricular injection exhibit a learning and memory deficit in object recognition, fear conditioning, and Morris water maze studies. We compared endothelial supernatants obtained after the endothelia were infected with P. aeruginosa possessing an intact [P. aeruginosa isolated from patient 103 (PA103) supernatant] or defective [mutant strain of P. aeruginosa lacking a functional type 3 secretion system needle tip complex (ΔPcrV) supernatant] type 3 secretion system. Whereas the PA103 supernatant impaired working memory, the ΔPcrV supernatant had no effect. Immunodepleting amyloid or tau proteins from the PA103 supernatant with the A11 or T22 antibodies, respectively, overtly rescued working memory. Recordings from hippocampal slices treated with endothelial supernatants or CSF from patients with or without nosocomial pneumonia indicated that endothelium-derived neurotoxins disrupted the postsynaptic synaptic response. Taken together, these results establish a plausible mechanism for the neurologic sequelae consequent to nosocomial bacterial pneumonia.-Balczon, R., Pittet, J.-F., Wagener, B. M., Moser, S. A., Voth, S., Vorhees, C. V., Williams, M. T., Bridges, J. P., Alvarez, D. F., Koloteva, A., Xu, Y., Zha, X.-M., Audia, J. P., Stevens, T., Lin, M. T. Infection-induced endothelial amyloids impair memory.


Subject(s)
Amyloid/toxicity , Endothelium, Vascular/metabolism , Lung/metabolism , Memory Disorders/pathology , Pseudomonas Infections/complications , Pseudomonas aeruginosa/isolation & purification , tau Proteins/toxicity , Amyloid/metabolism , Animals , Endothelium, Vascular/pathology , Fear , Female , Humans , Learning , Lung/pathology , Male , Memory Disorders/etiology , Memory Disorders/metabolism , Mice , Mice, Inbred C57BL , Neuronal Plasticity , Pseudomonas Infections/microbiology , tau Proteins/metabolism
13.
FASEB J ; 32(7): 3832-3843, 2018 07.
Article in English | MEDLINE | ID: mdl-29447005

ABSTRACT

Acid-sensing ion channels (ASICs) are the major proton receptor in the brain and a key mediator of acidosis-induced neuronal injuries in disease. Most of published data on ASIC function came from studies performed in mice, and relatively little is known about potential differences between human and mouse ASICs (hASIC and mASIC, respectively). This information is critical for us to better interpret the functional importance of ASICs in human disease. Here, we examined the expression of ASICs in acutely resected human cortical tissue. Compared with mouse cortex, human cortical tissue showed a similar ratio of ASIC1a:ASIC2a expression, had reduced ASIC2b level, and exhibited a higher membrane:total ratio of ASIC1a. We further investigated the mechanism for higher surface trafficking of hASIC1a in heterologous cells. A single amino acid at position 285 was critical for increased N-glycosylation and surface expression of hASIC1a. Consistent with the changes in trafficking and current, cells expressing hASIC1a or mASIC1a S285P mutant had a higher acid-activated calcium increase and exhibited worsened acidotoxicity. These data suggest that ASICs are likely to have a larger impact on acidosis-induced neuronal injuries in humans than mice, and this effect is, at least in part, a result of more efficient trafficking of hASIC1a.-Xu, Y., Jiang, Y.-Q., Li, C., He, M., Rusyniak, W. G., Annamdevula, N., Ochoa, J., Leavesley, S. J., Xu, J., Rich, T. C., Lin, M. T., Zha, X.-M. Human ASIC1a mediates stronger acid-induced responses as compared with mouse ASIC1a.


Subject(s)
Acid Sensing Ion Channels/metabolism , Protons , Acid Sensing Ion Channels/chemistry , Acid Sensing Ion Channels/genetics , Action Potentials , Adolescent , Adult , Animals , CHO Cells , Calcium/metabolism , Cerebral Cortex/metabolism , Cerebral Cortex/physiology , Cricetinae , Cricetulus , Female , Humans , Ion Channel Gating , Male , Mice , Mice, Inbred C57BL , Middle Aged , Mutation , Species Specificity
14.
Article in English | MEDLINE | ID: mdl-29209451

ABSTRACT

Acid-sensing ion channel 1a (ASIC1a) is the key subunit that determines acid-activated currents in neurons. ASIC1a is important for neural plasticity, learning, and for multiple neurological diseases, including stroke, multiple sclerosis, and traumatic injuries. These findings underline the importance for better defining mechanisms that regulate ASIC1a expression. During the past decade, microRNA has emerged as one important group of regulatory molecules in controlling protein expression. However, little is known about whether microRNA regulates ASIC1a. Here, we assessed several microRNAs that have predicted targeting sequences in the 3' untranslated region (UTR) of mouse ASIC1a. Our results indicated that miR-144 and -149 reduced ASIC1a expression while Let-7 increased ASIC1a protein levels. miR-30c, -98, -125, -182* had no significant effect. Since a reduction in ASIC1a expression may have translational potentials in treating neuronal injury, we further asked whether the effect of miR-144 and miR-149, both reduced ASIC1a expression, was through specific targeting of the predicted sites on ASIC1a. We mutated the targeting sequence of miR-144 and miR-149 in ASIC1a UTR. The effect of miR-149 was abolished in the corresponding mutation. In contrast, miR-144 still reduced ASIC1a level when its predicted target sequence was mutated. This result indicates that miR-149 targets the 3'UTR of ASIC1a and reduces its expression.

15.
J Cereb Blood Flow Metab ; 37(2): 528-540, 2017 Feb.
Article in English | MEDLINE | ID: mdl-26861816

ABSTRACT

Acidosis in the brain plays a critical role in neuronal injury in neurological diseases, including brain ischemia. One key mediator of acidosis-induced neuronal injury is the acid-sensing ion channels (ASICs). Current literature has focused on ASIC1a when studying acid signaling. The importance of ASIC2, which is also widely expressed in the brain, has not been appreciated. We found here a region-specific effect of ASIC2 on acid-mediated responses. Deleting ASIC2 reduced acid-activated current in cortical and striatal neurons, but had no significant effect in cerebellar granule neurons. In addition, we demonstrated that ASIC2 was important for ASIC1a expression, and that ASIC2a but not 2b facilitated ASIC1a surface trafficking in the brain. Further, we showed that ASIC2 deletion attenuated acidosis/ischemia-induced neuronal injury in organotypic hippocampal slices but had no effect in organotypic cerebellar slices. Consistent with an injurious role of ASIC2, we showed that ASIC2 deletion significantly protected the mouse brain from ischemic damage in vivo. These data suggest a critical region-specific contribution of ASIC2 to neuronal injury and reveal an important functional difference between ASIC2a and 2b in the brain.


Subject(s)
Acid Sensing Ion Channels/metabolism , Brain Ischemia/pathology , Brain/pathology , Neurons/pathology , Acid Sensing Ion Channels/analysis , Acid Sensing Ion Channels/genetics , Acidosis , Animals , Brain/metabolism , Brain Ischemia/genetics , Brain Ischemia/metabolism , Gene Deletion , Male , Mice , Mice, Inbred C57BL , NIH 3T3 Cells , Neurons/metabolism , Neuroprotection
16.
Mol Brain ; 9: 9, 2016 Jan 27.
Article in English | MEDLINE | ID: mdl-26819004

ABSTRACT

BACKGROUND: Acid-sensing ion channels (ASICs) are proton-gated cation channels that mediate acid-induced responses in neurons. ASICs are important for mechanosensation, learning and memory, fear, pain, and neuronal injury. ASIC2a is widely expressed in the nervous system and modulates ASIC channel trafficking and activity in both central and peripheral systems. Here, to better understand mechanisms regulating ASIC2a, we searched for potential protein motifs that regulate ASIC2a trafficking. RESULTS AND CONCLUSIONS: We identified a LLDLL sequence in the C-terminal juxtamembrane region of ASIC2a. Deleting or mutating the LLDLL sequence increased total expression and surface levels of ASIC2a in CHO cells. Mutating either of the two LL motifs had a similar effect. We further assessed ASIC2a localization in organotypic hippocampal slice neurons. The LL motif mutants exhibited increased dendritic trafficking and elevated targeting to dendritic spines. Consistent with an efficient trafficking, the LL motif mutants increased acid-activated current density. In addition, mutating the second LL motif increased pH sensitivity of the channel. These data identify the LL motifs as a negative regulator of ASIC2a trafficking and function, and suggest novel regulatory mechanisms in acid signaling.


Subject(s)
Acid Sensing Ion Channels/chemistry , Acid Sensing Ion Channels/metabolism , Amino Acid Motifs , Amino Acid Sequence , Animals , CHO Cells , Cricetinae , Cricetulus , Dendrites/metabolism , Glycosylation , Hydrogen-Ion Concentration , Ion Channel Gating , Mice, Inbred C57BL , Molecular Sequence Data , Mutation , Protein Transport , Structure-Activity Relationship , Subcellular Fractions/metabolism
17.
Mol Brain ; 9: 4, 2016 Jan 08.
Article in English | MEDLINE | ID: mdl-26746198

ABSTRACT

BACKGROUND: Acid-sensing ion channels (ASICs) are key mediators of acidosis-induced responses in neurons. However, little is known about the relative abundance of different ASIC subunits in the brain. Such data are fundamental for interpreting the relative contribution of ASIC1a homomers and 1a/2 heteromers to acid signaling, and essential for designing therapeutic interventions to target these channels. We used a simple biochemical approach and semi-quantitatively determined the molar ratio of ASIC1a and 2 subunits in mouse brain. Further, we investigated differential surface trafficking of ASIC1a, ASIC2a, and ASIC2b. RESULTS AND CONCLUSIONS: ASIC1a subunits outnumber the sum of ASIC2a and ASIC2b. There is a region-specific variation in ASIC2a and 2b expression, with cerebellum and striatum expressing predominantly 2b and 2a, respectively. Further, we performed surface biotinylation and found that surface ASIC1a and ASIC2a ratio correlates with their total expression. In contrast, ASIC2b exhibits little surface presence in the brain. This result is consistent with increased co-localization of ASIC2b with an ER marker in 3T3 cells. Our data are the first semi-quantitative determination of relative subunit ratio of various ASICs in the brain. The differential surface trafficking of ASICs suggests that the main functional ASICs in the brain are ASIC1a homomers and 1a/2a heteromers. This finding provides important insights into the relative contribution of various ASIC complexes to acid signaling in neurons.


Subject(s)
Acid Sensing Ion Channels/metabolism , Brain/metabolism , Protein Subunits/metabolism , 3T3 Cells , Animals , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Mice , Mice, Inbred C57BL , Protein Multimerization , Protein Transport , Reproducibility of Results
18.
Neuropharmacology ; 94: 42-8, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25582290

ABSTRACT

Extracellular brain pH fluctuates in both physiological and disease conditions. The main postsynaptic proton receptor is the acid-sensing ion channels (ASICs). During the past decade, much progress has been made on protons, ASICs, and neurological disease. This review summarizes the recent progress on synaptic role of protons and our current understanding of how ASICs contribute to various types of neuronal injury in the brain. This article is part of the Special Issue entitled 'Acid-Sensing Ion Channels in the Nervous System'.


Subject(s)
Acid Sensing Ion Channels/metabolism , Brain/metabolism , Nervous System Diseases/metabolism , Neuronal Plasticity/physiology , Neurons/metabolism , Animals , Humans
19.
Proc Natl Acad Sci U S A ; 111(24): 8961-6, 2014 Jun 17.
Article in English | MEDLINE | ID: mdl-24889629

ABSTRACT

Stimulating presynaptic terminals can increase the proton concentration in synapses. Potential receptors for protons are acid-sensing ion channels (ASICs), Na(+)- and Ca(2+)-permeable channels that are activated by extracellular acidosis. Those observations suggest that protons might be a neurotransmitter. We found that presynaptic stimulation transiently reduced extracellular pH in the amygdala. The protons activated ASICs in lateral amygdala pyramidal neurons, generating excitatory postsynaptic currents. Moreover, both protons and ASICs were required for synaptic plasticity in lateral amygdala neurons. The results identify protons as a neurotransmitter, and they establish ASICs as the postsynaptic receptor. They also indicate that protons and ASICs are a neurotransmitter/receptor pair critical for amygdala-dependent learning and memory.


Subject(s)
Acid Sensing Ion Channels/genetics , Amygdala/physiology , Neuronal Plasticity , Neurotransmitter Agents/metabolism , Protons , Synapses/physiology , Acid Sensing Ion Channel Blockers/chemistry , Acidosis , Amygdala/metabolism , Animals , Brain/metabolism , Electrodes , Excitatory Postsynaptic Potentials , Hydrogen-Ion Concentration , Ion Channels/chemistry , Learning , Long-Term Potentiation , Memory , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurons/metabolism , Organ Culture Techniques , Patch-Clamp Techniques , Peptides/chemistry , Spider Venoms/chemistry
20.
Mol Brain ; 6: 1, 2013 Jan 02.
Article in English | MEDLINE | ID: mdl-23281934

ABSTRACT

Extracellular acidification occurs in the brain with elevated neural activity, increased metabolism, and neuronal injury. This reduction in pH can have profound effects on brain function because pH regulates essentially every single biochemical reaction. Therefore, it is not surprising to see that Nature evolves a family of proteins, the acid-sensing ion channels (ASICs), to sense extracellular pH reduction. ASICs are proton-gated cation channels that are mainly expressed in the nervous system. In recent years, a growing body of literature has shown that acidosis, through activating ASICs, contributes to multiple diseases, including ischemia, multiple sclerosis, and seizures. In addition, ASICs play a key role in fear and anxiety related psychiatric disorders. Several recent reviews have summarized the importance and therapeutic potential of ASICs in neurological diseases, as well as the structure-function relationship of ASICs. However, there is little focused coverage on either the basic biology of ASICs or their contribution to neural plasticity. This review will center on these topics, with an emphasis on the synaptic role of ASICs and molecular mechanisms regulating the spatial distribution and function of these ion channels.


Subject(s)
Acid Sensing Ion Channels/metabolism , Synapses/metabolism , Acid Sensing Ion Channels/chemistry , Acidosis/metabolism , Animals , Glycosylation , Humans , Neurons/metabolism , Protein Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...