Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Med Rev (2021) ; 3(3): 214-229, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37789960

ABSTRACT

Gastric cancer (GC) is one of the commonest cancers with high morbidity and mortality in the world. How to realize precise diagnosis and therapy of GC owns great clinical requirement. In recent years, artificial intelligence (AI) has been actively explored to apply to early diagnosis and treatment and prognosis of gastric carcinoma. Herein, we review recent advance of AI in early screening, diagnosis, therapy and prognosis of stomach carcinoma. Especially AI combined with breath screening early GC system improved 97.4 % of early GC diagnosis ratio, AI model on stomach cancer diagnosis system of saliva biomarkers obtained an overall accuracy of 97.18 %, specificity of 97.44 %, and sensitivity of 96.88 %. We also discuss concept, issues, approaches and challenges of AI applied in stomach cancer. This review provides a comprehensive view and roadmap for readers working in this field, with the aim of pushing application of AI in theranostics of stomach cancer to increase the early discovery ratio and curative ratio of GC patients.

2.
J Biomed Nanotechnol ; 18(3): 807-817, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35715908

ABSTRACT

How to develop near-infrared second window (NIR-II, 1000-1700 nm) fluorescent nanoprobes with a uniform size, strong fluorescence signal and good biosafety owns great clinical requirement. Herein we reported that a two photon fluorescent nanoprobe was developed via encapsulating NIR-II-fluorescent molecules into DSPE-PEG, which was effectively endocytosized by cancer cells, and achieved strong NIR-II fluorescence imaging in cancer cells and cancer cell-beard mice models. Prepared NIR-II-fluorescent nanoprobe exhibited rapid metabolism and excellent biocompatibility. In conclusion, the prepared two photon nanoprobe owns good biosafety, and clinical translational prospect in NIR-II fluorescent imaging of tumour in vivo in near future.


Subject(s)
Nanoparticles , Neoplasms , Animals , Containment of Biohazards , Fluorescent Dyes , Mice , Neoplasms/diagnostic imaging , Optical Imaging/methods
3.
Nanoscale ; 13(37): 15569-15575, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34519326

ABSTRACT

Near-infrared two-zone (NIR-II) fluorescence imaging has attracted attention as a non-invasive imaging technology that provides centimeter-level depth and micron-level resolution. However, producing a NIR-II fluorescent nanoprobe with uniform size, high bio-identical capacity, and fluorescence intensity, while being metabolizable in vivo, remains a challenge. We first produce a hydrophobic NIR-II fluorescent molecule with AIE properties, and subject it to ultrasonic and extrusion treatments to generate a DSPE-PEG-encapsulated NIR-II nanoprobe with an ultra-homogeneous particle size. The current study based on in vitro and mouse tumor-bearing model-based experiments indicate that cancer cells could efficiently take up this nanoprobe, which aggregates in tumor tissues, is susceptible to metabolization, and enables ideal photothermal therapeutic effects. Thus, this NIR-II nanoprobe with AIE properties shows great potential for precise clinical diagnosis and treatment of cancer.


Subject(s)
Photothermal Therapy , Prostatic Neoplasms , Animals , Coloring Agents , Fluorescence , Fluorescent Dyes , Humans , Male , Mice , Optical Imaging , Particle Size , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/therapy
4.
Nanoscale ; 13(10): 5383-5399, 2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33666213

ABSTRACT

Early diagnosis of tumors is crucial in selecting appropriate treatment options to achieve the desired therapeutic effect, but it is difficult to accurately diagnose cancer by a single imaging modality due to technical constraints. Therefore, we synthesized a type of Fe3O4 nanoparticle with manganese dioxide grown on the surface and then prepared it by loading photosensitive drugs and traditional Chinese medicine monomers to create an integrated diagnosis/treatment multifunctional nanoplatform: Fe3O4@MnO2-celastrol (CSL)/Ce6. This nanoplatform can have full advantage of the tumor microenvironment (TME) characteristics of hypoxia (hypoxia), acidic pH (acidosis), and increased levels of reactive oxygen species (e.g., H2O2), even outside the TME. Specific imaging and drug release can also enhance tumor therapy by adjusting the hypoxic state of the TME to achieve the combined effect of chemotherapy (CT) and photodynamic therapy (PDT). Moreover, the obtained Fe3O4@MnO2-CSL/Ce6 has H2O2- and pH-sensitive biodegradation and can release the anticancer drug celastrol (CSL) and photosensitizer Ce6 in TME and simultaneously generate O2 and Mn2+. Therefore, the "dual response" synergistic strategy also confers specific drug release on nanomaterials, relieves tumor hypoxia and antioxidant capacity, and achieves significant optimization of CT and PDT. Furthermore, the resulting Mn2+ ions and Fe3O4 nanoparticles can be used for T1/T2 magnetic resonance imaging on tumor-bearing mice, and the released Ce6 can simultaneously provide fluorescence imaging functions. Therefore, Fe3O4@MnO2-CSL/Ce6 realized the synergistic treatment of PDT and CT under multimodal near-infrared fluorescence/photoacoustic (photoacoustic) imaging monitoring, showing its great potential in the accurate medical treatment of tumors.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Porphyrins , Animals , Cell Line, Tumor , Hydrogen Peroxide/therapeutic use , Iron/therapeutic use , Manganese , Manganese Compounds , Mice , Multimodal Imaging , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Oxides/therapeutic use , Photosensitizing Agents/therapeutic use , Porphyrins/therapeutic use , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...