Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Vet World ; 15(4): 848-854, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35698495

ABSTRACT

Background and Aim: Clinical strains of microorganisms, including pathogenic yeast-like fungi (YLF), are resistant to currently used antifungal agents. Thus, it is relevant to study the combinations of existing antimicrobial drugs and a medicinal extract of plant origin (farnesol). In previous studies, farnesol showed a relatively strong anti-biofilm effect against Candida albicans. This study aimed to determine how much the resistance profile of non-biofilm microorganisms can change. Materials and Methods: Six clinical isolates of C. albicans and one reference strain were used to study the interaction of farnesol with the most used antimycotics. To determine the sensitivity of YLF to antimycotic drugs, such as nystatin (50 µg), amphotericin B (10 µg), ketoconazole (10 µg), clotrimazole (10 µg), voriconazole (10 µg), fluconazole (25 µg), miconazole (10 µg), and intraconazole (10 µg), the classic disk diffusion method was used. In the second stage, one of the six strains was used to simulate candidiasis of the gastrointestinal tract in an in vivo quail model. As an unusual experimental design, this study investigated the effects of pretreated C. albicans in quails, not the in vivo pathogenicity of C. albicans, after treatment with farnesol. Results: The resistance profiles of Candida strains did not improve with farnesol in all strains. All concentrations of farnesol (100, 50, and 25 µM) demonstrated a fungistatic effect (i.e., an increase in drug sensitivity) in 23 of 56 (7×8) cases (41%). The remaining 54% demonstrated no changes in the resistance to antifungal drugs or deterioration of the indicators in rare cases (5%). At 100 µM farnesol, sensitivity improved in 33 of 56 cases (59%). Candidiasis or the severity of clinical disease of the quail digestive tract developed to a lesser extent if fungi were treated with farnesol. Conclusion: Farnesol does not always show a positive result on single cells without biofilm in the laboratory. However, in a biofilm or an in vivo model with biofilms, farnesol can be considered a new antimycotic drug or an additive to existing antimycotics.

2.
Animals (Basel) ; 12(4)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35203197

ABSTRACT

Candida albicans was the first eukaryotic microorganism to exhibit quorum-sensing through the secretion of the sesquiterpene E, farnesol. This molecule is generated by dephosphorylation of farnesyl pyrophosphate in the mevalonate biosynthetic pathway in mammalian and yeast cells. Exogenous farnesol inhibits yeast-to-hyphal formation in a concentration- and time-dependent manner at the earliest stage of hyphal development. Much research has been devoted to studying the role of farnesol as an inhibitor of hyphal morphogenesis; however, little research has been published regarding the in vivo impacts of farnesol on fungal virulence and the development of Candida infection. While other studies have examined the impact of multiple doses of farnesol in addition to antimycotics, we hypothesize that C. albicans treated with a single dose of this quorum-sensing molecule could reduce fungal virulence in a quail model.

SELECTION OF CITATIONS
SEARCH DETAIL
...