Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
JMIRx Med ; 5: e45973, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38889069

ABSTRACT

Background: The Society of Thoracic Surgeons and European System for Cardiac Operative Risk Evaluation (EuroSCORE) II risk scores are the most commonly used risk prediction models for in-hospital mortality after adult cardiac surgery. However, they are prone to miscalibration over time and poor generalization across data sets; thus, their use remains controversial. Despite increased interest, a gap in understanding the effect of data set drift on the performance of machine learning (ML) over time remains a barrier to its wider use in clinical practice. Data set drift occurs when an ML system underperforms because of a mismatch between the data it was developed from and the data on which it is deployed. Objective: In this study, we analyzed the extent of performance drift using models built on a large UK cardiac surgery database. The objectives were to (1) rank and assess the extent of performance drift in cardiac surgery risk ML models over time and (2) investigate any potential influence of data set drift and variable importance drift on performance drift. Methods: We conducted a retrospective analysis of prospectively, routinely gathered data on adult patients undergoing cardiac surgery in the United Kingdom between 2012 and 2019. We temporally split the data 70:30 into a training and validation set and a holdout set. Five novel ML mortality prediction models were developed and assessed, along with EuroSCORE II, for relationships between and within variable importance drift, performance drift, and actual data set drift. Performance was assessed using a consensus metric. Results: A total of 227,087 adults underwent cardiac surgery during the study period, with a mortality rate of 2.76% (n=6258). There was strong evidence of a decrease in overall performance across all models (P<.0001). Extreme gradient boosting (clinical effectiveness metric [CEM] 0.728, 95% CI 0.728-0.729) and random forest (CEM 0.727, 95% CI 0.727-0.728) were the overall best-performing models, both temporally and nontemporally. EuroSCORE II performed the worst across all comparisons. Sharp changes in variable importance and data set drift from October to December 2017, from June to July 2018, and from December 2018 to February 2019 mirrored the effects of performance decrease across models. Conclusions: All models show a decrease in at least 3 of the 5 individual metrics. CEM and variable importance drift detection demonstrate the limitation of logistic regression methods used for cardiac surgery risk prediction and the effects of data set drift. Future work will be required to determine the interplay between ML models and whether ensemble models could improve on their respective performance advantages.

2.
Bioengineering (Basel) ; 10(11)2023 Nov 10.
Article in English | MEDLINE | ID: mdl-38002431

ABSTRACT

BACKGROUND: Although electronic health records (EHR) provide useful insights into disease patterns and patient treatment optimisation, their reliance on unstructured data presents a difficulty. Echocardiography reports, which provide extensive pathology information for cardiovascular patients, are particularly challenging to extract and analyse, because of their narrative structure. Although natural language processing (NLP) has been utilised successfully in a variety of medical fields, it is not commonly used in echocardiography analysis. OBJECTIVES: To develop an NLP-based approach for extracting and categorising data from echocardiography reports by accurately converting continuous (e.g., LVOT VTI, AV VTI and TR Vmax) and discrete (e.g., regurgitation severity) outcomes in a semi-structured narrative format into a structured and categorised format, allowing for future research or clinical use. METHODS: 135,062 Trans-Thoracic Echocardiogram (TTE) reports were derived from 146967 baseline echocardiogram reports and split into three cohorts: Training and Validation (n = 1075), Test Dataset (n = 98) and Application Dataset (n = 133,889). The NLP system was developed and was iteratively refined using medical expert knowledge. The system was used to curate a moderate-fidelity database from extractions of 133,889 reports. A hold-out validation set of 98 reports was blindly annotated and extracted by two clinicians for comparison with the NLP extraction. Agreement, discrimination, accuracy and calibration of outcome measure extractions were evaluated. RESULTS: Continuous outcomes including LVOT VTI, AV VTI and TR Vmax exhibited perfect inter-rater reliability using intra-class correlation scores (ICC = 1.00, p < 0.05) alongside high R2 values, demonstrating an ideal alignment between the NLP system and clinicians. A good level (ICC = 0.75-0.9, p < 0.05) of inter-rater reliability was observed for outcomes such as LVOT Diam, Lateral MAPSE, Peak E Velocity, Lateral E' Velocity, PV Vmax, Sinuses of Valsalva and Ascending Aorta diameters. Furthermore, the accuracy rate for discrete outcome measures was 91.38% in the confusion matrix analysis, indicating effective performance. CONCLUSIONS: The NLP-based technique yielded good results when it came to extracting and categorising data from echocardiography reports. The system demonstrated a high degree of agreement and concordance with clinician extractions. This study contributes to the effective use of semi-structured data by providing a useful tool for converting semi-structured text to a structured echo report that can be used for data management. Additional validation and implementation in healthcare settings can improve data availability and support research and clinical decision-making.

3.
Digit Health ; 9: 20552076231187605, 2023.
Article in English | MEDLINE | ID: mdl-37492033

ABSTRACT

Objective: The introduction of new clinical risk scores (e.g. European System for Cardiac Operative Risk Evaluation (EuroSCORE) II) superseding original scores (e.g. EuroSCORE I) with different variable sets typically result in disparate datasets due to high levels of missingness for new score variables prior to time of adoption. Little is known about the use of ensemble learning to incorporate disparate data from legacy scores. We tested the hypothesised that Homogenenous and Heterogeneous Machine Learning (ML) ensembles will have better performance than ensembles of Dynamic Model Averaging (DMA) for combining knowledge from EuroSCORE I legacy data with EuroSCORE II data to predict cardiac surgery risk. Methods: Using the National Adult Cardiac Surgery Audit dataset, we trained 12 different base learner models, based on two different variable sets from either EuroSCORE I (LogES) or EuroScore II (ES II), partitioned by the time of score adoption (1996-2016 or 2012-2016) and evaluated on holdout set (2017-2019). These base learner models were ensembled using nine different combinations of six ML algorithms to produce homogeneous or heterogeneous ensembles. Performance was assessed using a consensus metric. Results: Xgboost homogenous ensemble (HE) was the highest performing model (clinical effectiveness metric (CEM) 0.725) with area under the curve (AUC) (0.8327; 95% confidence interval (CI) 0.8323-0.8329) followed by Random Forest HE (CEM 0.723; AUC 0.8325; 95%CI 0.8320-0.8326). Across different heterogenous ensembles, significantly better performance was obtained by combining siloed datasets across time (CEM 0.720) than building ensembles of either 1996-2011 (t-test adjusted, p = 1.67×10-6) or 2012-2019 (t-test adjusted, p = 1.35×10-193) datasets alone. Conclusions: Both homogenous and heterogenous ML ensembles performed significantly better than DMA ensemble of Bayesian Update models. Time-dependent ensemble combination of variables, having differing qualities according to time of score adoption, enabled previously siloed data to be combined, leading to increased power, clinical interpretability of variables and usage of data.

SELECTION OF CITATIONS
SEARCH DETAIL
...