Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
J Phys Chem A ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38870409

ABSTRACT

Efficient and accurate reactive force fields (e.g., ReaxFF) are pivotal for large-scale atomistic simulations to comprehend microscopic combustion processes. ReaxFF has been extensively utilized to describe chemical reactions in condensed phases, but most existing ReaxFF models rely on quantum mechanical (QM) data nearly two decades old, particularly in hydrocarbon systems, constraining their accuracy and applicability. Addressing this gap, we introduce a reparametrized ReaxFFCHO-S22 for C/H/O systems, tailored for studying the pyrolysis and combustion of hydrocarbon fuel. Our approach involves high-level QM benchmarks and large database construction for C/H/O systems, global ReaxFF parameter optimization, and molecular dynamics simulations of typical hydrocarbon fuels. Density functional theory (DFT) computations utilized the M06-2X functional at the meta-generalized gradient approximation (meta-GGA) level with a large basis set (6-311++G**). Our new ReaxFFCHO-S22 model exhibits a minimum 10% enhancement in accuracy compared to the previous ReaxFF models for a large variety of hydrocarbon molecules. This advanced ReaxFFCHO-S22 not only enables efficient large-scale studies on the microscopic chemical reactions of more complex hydrocarbon fuel but also can extend to biofuels, energetic materials, polymers, and other pertinent systems, thus serving as a valuable tool for studying chemical reaction dynamics of the large-scale hydrocarbon condensed phase at an atomistic level.

2.
Cell ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38810645

ABSTRACT

The development of perennial crops holds great promise for sustainable agriculture and food security. However, the evolution of the transition between perenniality and annuality is poorly understood. Here, using two Brassicaceae species, Crucihimalaya himalaica and Erysimum nevadense, as polycarpic perennial models, we reveal that the transition from polycarpic perennial to biennial and annual flowering behavior is a continuum determined by the dosage of three closely related MADS-box genes. Diversification of the expression patterns, functional strengths, and combinations of these genes endows species with the potential to adopt various life-history strategies. Remarkably, we find that a single gene among these three is sufficient to convert winter-annual or annual Brassicaceae plants into polycarpic perennial flowering plants. Our work delineates a genetic basis for the evolution of diverse life-history strategies in plants and lays the groundwork for the generation of diverse perennial Brassicaceae crops in the future.

3.
Int J Biol Markers ; 39(2): 158-167, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38321777

ABSTRACT

BACKGROUND: Typically, the overexpressed keratin 7 (KRT7) is considered a validated therapeutic target and prognosis marker in bladder cancer. However, the crucial roles of KRT7 in the clinical prognosis and immune microenvironment in bladder cancer remain unclear. METHODS: Initially, the expression levels of KRT7 in public databases were analyzed that is,Tumor Immune Estimation Resource (TIMER) 2.0 and Gene Expression Profiling Interactive Analysis (GEPIA). Further, the clinical tissue samples from patients (n = 10 pairs) were collected to confirm the expression trends of KRT7 and detected by immunohistochemistry (IHC) analysis. Meanwhile, the relationship between KRT7 and the prognosis of bladder cancer patients was analyzed by Kaplan-Meier plotter estimation and Cox regression analysis. Finally, TIMER 2.0 and IHC staining analyses were performed to calculate the infiltration abundances of three kinds of immune cells in eligible bladder tumor samples. RESULTS: The TIMER 2.0 and GEPIA datasets suggested the differences in the expression levels of KRT7 in tumors, in which KRT7 was significantly upregulated in bladder cancer. The KRT7 expression was closely associated with patients' gender, tumor histologic subtypes, T status, and American Joint Committee on Cancer stages. Notably, the increased KRT7 indicated poor overall survival and disease-free survival rates. Moreover, KRT7 expression could be responsible for immune infiltration in the cancer microenvironment of the bladder. Finally, the high expression level of KRT7 increased the presence of regulatory T cells (Tregs) but reduced the infiltration of CD8+ T and natural killer cells. CONCLUSION: KRT7 as a biomarker potentiated the prediction of bladder cancer prognosis and the immune microenvironment.


Subject(s)
Keratin-7 , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/immunology , Prognosis , Keratin-7/metabolism , Keratin-7/genetics , Female , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Male , Tumor Microenvironment , Middle Aged , Clinical Relevance
4.
Sci Total Environ ; 915: 169971, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38211867

ABSTRACT

Carbonates represent major sedimentary rocks in on the continental and oceanic crust of Earth and are often closely related to microbial activities. However, the origin of magnesium-containing carbonates, such as dolomites, has not yet been fully resolved and was debated for many years. In order to reveal the specific role of organic components and microbes on the precipitation of magnesium ions, different dolomitization experiments were carried out with various setups for the presence of eight amino acids and microbes. The Gibbs free energy for dehydration of Mg[6(H2O)]2+ and organic­magnesium complexes (OMC) at the calcite (101¯4) step edges were calculated by density functional theory (DFT). Combined results of X-ray diffraction (XRD), scanning electron microscope-energy disperse spectroscopy (SEM-EDS), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and high resolution transmission electron microscopy (HRTEM) indicated that magnesium ions were incorporated into the crystal lattice of calcite after calcite reacting with organic­magnesium solutions (OMS). Dolomite was formed on the surface of calcite under the presence of microbes. The Gibbs free energy barrier of asp, glu, gly, thr, tyr, lys, ser, and ala bonding to Mg[6(H2O)]2+ were 17.8, 16.2, 14.8, 16.5, 19.2, 14.5, 19.0, 17.0 kcal/mol, those are lower than that of the direct dehydration of Mg[6(H2O)]2+ of 19.45 kcal/mol. The Gibbs free barrier of OMC bonding at the acute step ([481¯] and [4¯41]) of 29.7/34.25 kcal/mol are lower than that of Mg[6(H2O)]2+ of 32.45/36.7 kcal/mol and the Gibbs free barrier of OMC bonding at the obtuse step ([481¯] and [4¯41]) of 42.07/47.6 kcal/mol are lower than that of Mg[6(H2O)]2+ of 55.4/60.34 kcal/mol. The enhancing effects of organic components and microbes on the precipitation of magnesium ions were collectively determined through experimental and theoretical calculation, thus setting up a new direction for future studies of dolomitization with a focus on microbial- mineral interactions.

5.
J Affect Disord ; 348: 283-296, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38159656

ABSTRACT

AIMS: To assess the effect of the translocator protein 18 kDa (TSPO) on postpartum depression and explore its mechanism. METHODS: Postpartum depression (PPD) mouse model was established, and flow cytometry, immunofluorescence, Western blot analysis, real-time quantitative PCR, adeno-associated virus (AAV), co-immunoprecipitation-mass spectrometry and immunofluorescence co-staining were used to detect the effect of TSPO ligand ZBD-2 on PPD mice. RESULTS: ZBD-2 inhibits the overactivation of microglia in the hippocampus and amygdala of PPD model mice. ZBD-2 not only inhibited the inflammation but also repressed the burst of reactive oxygen species (ROS) and mitochondrial ROS (mtROS). Meanwhile, ZBD-2 protects mitochondria from LPS-induced damages through inhibiting the influx of calcium. ZBD-2 modulated the calcium influx by increasing the level of translocase of the outer mitochondrial membrane 40 (TOM40) and reducing the interaction of TSPO and TOM40. In addition, the effect of ZBD-2 was partially dependent on anti-oxidative process. Knockdown of TOM40 by adeno-associated virus (AAV) in the hippocampus or amygdala dramatically reduced the effect of ZBD-2 on PPD, indicating that TOM40 mediates the effect of ZBD-2 on PPD. CONCLUSIONS: TOM40 is required for the effect of ZBD-2 on treating anxiety and depression in PPD mice. This study reveals the role of microglia TSPO in PPD development and provides the new therapeutic strategy for PPD.


Subject(s)
Depression, Postpartum , Microglia , Animals , Female , Mice , Calcium/metabolism , Carrier Proteins , Depression, Postpartum/drug therapy , Depression, Postpartum/metabolism , Homeostasis , Microglia/metabolism , Mitochondrial Membranes/metabolism , Reactive Oxygen Species/metabolism , Receptors, GABA/metabolism
6.
RSC Med Chem ; 14(7): 1254-1259, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37484565

ABSTRACT

Considering the millions of COVID-19 patients worldwide, a global critical challenge of low-cost and efficient anti-COVID-19 drug production has emerged. Favipiravir is one of the potential anti-COVID-19 drugs, but its original synthetic route with 7 harsh steps gives a low product yield (0.8%) and has a high cost ($68 per g). Herein, we demonstrated a low-cost and efficient synthesis route for favipiravir designed using improved retrosynthesis software, which involves only 3 steps under safe and near-ambient air conditions. A yield of 32% and cost of $1.54 per g were achieved by this synthetic route. We also used the same strategy to optimize the synthesis of sabizabulin. We anticipate that these synthetic routes will contribute to the prevention and treatment of COVID-19.

7.
Adv Mater ; 35(42): e2302716, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37434296

ABSTRACT

Neural-vascular networks are densely distributed through periosteum, cortical bone, and cancellous bone, which is of great significance for bone regeneration and remodeling. Although significant progress has been made in bone tissue engineering, ineffective bone regeneration, and delayed osteointegration still remains an issue due to the ignorance of intrabony nerves and blood vessels. Herein, inspired by space-filling polyhedra with open architectures, polyhedron-like scaffolds with spatial topologies are prepared via 3D-printing technology to mimic the meshwork structure of cancellous bone. Benefiting from its spatial topologies, polyhedron-like scaffolds greatly promoted the osteogenic differentiation of bone mesenchymal stem cells (BMSCs) via activating PI3K-Akt signals, and exhibiting satisfactory performance on angiogenesis and neurogenesis. Computational fluid dynamic (CFD) simulation elucidates that polyhedron-like scaffolds have a relatively lower area-weighted average static pressure, which is beneficial to osteogenesis. Furthermore, in vivo experiments further demonstrate that polyhedron-like scaffolds obviously promote bone formation and osteointegration, as well as inducing vascularization and ingrowth of nerves, leading to innervated and vascularized bone regeneration. Taken together, this work offers a promising approach for fabricating multifunctional scaffolds without additional exogenous seeding cells and growth factors, which holds great potential for functional tissue regeneration and further clinical translation.


Subject(s)
Biocompatible Materials , Osteogenesis , Biocompatible Materials/chemistry , Osteogenesis/physiology , Tissue Scaffolds/chemistry , Phosphatidylinositol 3-Kinases , Bone Regeneration , Tissue Engineering , Cell Differentiation , Printing, Three-Dimensional
8.
Nano Lett ; 23(15): 7157-7165, 2023 08 09.
Article in English | MEDLINE | ID: mdl-37498773

ABSTRACT

Considering the challenge in the treatment of severe breast tumor patients, xonotlite nanowire-containing bioactive scaffolds (Fe3O4-CS-GelMA) were fabricated by the 3D-printing technique for the therapy of injured adipose tissue after surgery. Importantly, benefiting from the excellent magnetothermal performance of Fe3O4 microspheres, Fe3O4-CS-GelMA scaffolds could effectively kill tumor cells in vitro and suppress breast cancer in vivo under an alternating magnetic field, and the tumor did not recur in 2 weeks. In addition, attributed to the released bioactive inorganic ions, Fe3O4-CS-GelMA composite scaffolds could effectively promote the expression of adipogenesis-related genes and proteins of adipose-derived stem cells (ADSCs) via the PI3K-AKT signaling pathway in vitro. Furthermore, Fe3O4-CS-GelMA scaffolds with ADSCs could obviously stimulate the formation of adipose in vivo, compared with that of pure GelMA without inorganic components. Therefore, this study offers a promising strategy for the therapy of breast tumors after the surgical excision of breast carcinoma.


Subject(s)
Breast Neoplasms , Nanowires , Humans , Female , Tissue Scaffolds , Osteogenesis , Cell Differentiation , Breast Neoplasms/drug therapy , Phosphatidylinositol 3-Kinases , Nanowires/therapeutic use , Printing, Three-Dimensional , Adipose Tissue , Tissue Engineering/methods
9.
Small ; 19(42): e2302739, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37322318

ABSTRACT

Dual-Active-Sites Single-Atom catalysts (DASs SACs) are not only the improvement of SACs but also the expansion of dual-atom catalysts. The DASs SACs contains dual active sites, one of which is a single atomic active site, and the other active site can be a single atom or other type of active site, endowing DASs SACs with excellent catalytic performance and a wide range of applications. The DASs SACs are categorized into seven types, including the neighboring mono metallic DASs SACs, bonded DASs SACs, non-bonded DASs SACs, bridged DASs SACs, asymmetric DASs SACs, metal and nonmetal combined DASs SACs and space separated DASs SACs. Based on the above classification, the general methods for the preparation of DASs SACs are comprehensively described, especially their structural characteristics are discussed in detail. Meanwhile, the in-depth assessments of DASs SACs for variety applications including electrocatalysis, thermocatalysis and photocatalysis are provided, as well as their unique catalytic mechanism are addressed. Moreover, the prospects and challenges for DASs SACs and related applications are highlighted. The authors believe the great expectations for DASs SACs, and this review will provide novel conceptual and methodological perspectives and exciting opportunities for further development and application of DASs SACs.

10.
Nat Commun ; 14(1): 290, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36653415

ABSTRACT

Weed species are detrimental to crop yield. An understanding of how weeds originate and adapt to field environments is needed for successful crop management and reduction of herbicide use. Although early flowering is one of the weed trait syndromes that enable ruderal weeds to overcome frequent disturbances, the underlying genetic basis is poorly understood. Here, we establish Cardamine occulta as a model to study weed ruderality. By genome assembly and QTL mapping, we identify impairment of the vernalization response regulator gene FLC and a subsequent dominant mutation in the blue-light receptor gene CRY2 as genetic drivers for the establishment of short life cycle in ruderal weeds. Population genomics study further suggests that the mutations in these two genes enable individuals to overcome human disturbances through early deposition of seeds into the soil seed bank and quickly dominate local populations, thereby facilitating their spread in East China. Notably, functionally equivalent dominant mutations in CRY2 are shared by another weed species, Rorippa palustris, suggesting a common evolutionary trajectory of early flowering in ruderal weeds in Brassicaceae.


Subject(s)
Brassicaceae , Herbicides , Humans , Animals , Brassicaceae/genetics , Plant Weeds/genetics , Soil , Life Cycle Stages
11.
Chemistry ; 29(10): e202203108, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36401597

ABSTRACT

Due to the limited resources and high cost of noble metals, boosting their catalytic activities is highly desired in the current catalysis industry. Here, we report a synergetic catalyst, combining Pd2+ and Pd0 species in a nitrogen-doped porous carbons (NPC), which shows boosted catalytic activities in hydrogenation reactions of organic nitro compounds (nitrobenzene, 4-nitrophenol, 1-nitronaphthalene and 1-nitropropane) under near ambient conditions. This synergetic catalyst NPC-[Pd] was synthesized by partial reduction of a palladium-loaded NPC. The catalytic activities and selectivity of NPC-[Pd] for hydrogenation were enhanced significantly compared with those of NPC-Pd2+ or NPC-Pd0 nanoparticles. Theoretical calculations show that H2 preferentially dissociates on Pd nanoparticles, and then organic molecules (nitrobenzene) can be captured and react with the dissociated H atom on Pd2+ sites. Similar reaction procedure also occur on Pt or Rh. Hydrogenation of different aromatic compounds with different functional groups (naphthalene, 4-nitrochlorobenzene, benzaldehyde and acetophenone) confirmed the broad excellent catalytic activity of this synergistic catalyst.

12.
Bioact Mater ; 22: 127-140, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36203957

ABSTRACT

Regeneration of severe bone defects remains an enormous challenge in clinic. Developing regenerative scaffolds to directionally guide bone growth is a potential strategy to overcome this hurdle. Conch, an interesting creature widely spreading in ocean, has tough spiral shell that can continuously grow along the spiral direction. Herein, inspired by the physiological features of conches, a conch-like (CL) scaffold based on ß-TCP bioceramic material was successfully prepared for guiding directional bone growth via digital light processing (DLP)-based 3D printing. Benefiting from the spiral structure, the CL scaffolds significantly improved cell adhesion, proliferation and osteogenic differentiation in vitro compared to the conventional 3D scaffolds. Particularly, the spiral structure in the scaffolds could efficiently induce cells to migrate from the bottom to the top of the scaffolds, which was like "cells climbing stairs". Furthermore, the capability of guiding directional bone growth for the CL scaffolds was demonstrated by a special half-embedded femoral defects model in rabbits. The new bone tissue could consecutively grow into the protruded part of the scaffolds along the spiral cavities. This work provides a promising strategy to construct biomimetic biomaterials for guiding directional bone tissue growth, which offers a new treatment concept for severe bone defects, and even limb regeneration.

13.
Small ; 18(50): e2204942, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36323622

ABSTRACT

The electrochemical sensing of nitric oxide (NO) molecules by metal-organic framework (MOF) catalysts has been impeded, to a large extent, owing to their poor electrical conductivity and weak NO adsorption. In this work, incomplete in situ conversion of V2 CTx (T = terminal atoms) MXene to MOF is adopted, forming MOF@MXene heterostructures, which outperform MXene and MOF monocomponents toward electrochemical NO sensing. Density functional theory (DFT) calculation results indicate metal-like electronic characters for the heterostructure benefiting from the dominating contribution of the V 3d orbitals of the metallic MXene. Moreover, plane-averaged charge density difference shows substantial charge redistribution occurs at the heterointerfaces, producing a built-in field, which facilitates charge transfer. Besides, molecular mechanics-based simulated annealing calculation reveals greatly enhanced adsorption energies of NO molecules on the heterointerfaces than that on separate MOFs and MXenes. Hence, the facilitated charge transfer and preferential NO adsorption are responsible for the dramatically promoted performance toward NO sensing. The prudent design of MOF@MXene heterostructure may spur advanced electrocatalysts for electrochemical sensing.

14.
Regen Biomater ; 9: rbac055, 2022.
Article in English | MEDLINE | ID: mdl-36072263

ABSTRACT

For the research of biomaterials in bone tissue engineering, it is still a challenge to fabricate bioceramics that overcome brittleness while maintaining the great biological performance. Here, inspired by the toughness of natural materials with hierarchical laminated structure, we presented a directional assembly-sintering approach to fabricate laminated MXene/calcium silicate-based (L-M/CS) bioceramics. Benefiting from the orderly laminated structure, the L-M/CS bioceramics exhibited significantly enhanced toughness (2.23 MPa·m1/2) and high flexural strength (145 MPa), which were close to the mechanical properties of cortical bone. Furthermore, the L-M/CS bioceramics possessed more suitable degradability than traditional CaSiO3 bioceramics due to the newly formed CaTiSiO5 after sintering. Moreover, the L-M/CS bioceramics showed good biocompatibility and could stimulate the expression of osteogenesis-related genes. The mechanism of promoting osteogenic differentiation had been shown to be related to the Wnt signaling pathway. This work not only fabricated calcium silicate-based bioceramics with excellent mechanical and biological properties for bone tissue engineering but also provided a strategy for the combination of bionics and bioceramics.

15.
Front Genet ; 13: 903421, 2022.
Article in English | MEDLINE | ID: mdl-36159981

ABSTRACT

Stomach adenocarcinoma (STAD) is one of the most common malignant tumors of the digestive tract, and its survival predictors are critical for precision medicine but have not been fully investigated. The complement system is a complex multistep cascade at the interface of innate and adaptive immunity, which augments the function of antibodies and phagocytes. This study aimed to construct and validate a CSRG signature based on TCGA (The Cancer Genome Atlas) STAD dataset and revalidated it in an external GEO (Gene Expression Omnibus) STAD cohort. Subsequently, we assessed the association of risk levels with the stromal and immune cell infiltration level in STAD using the ESTIMATE, single-sample Gene Set Enrichment Analysis (ssGSEA), and Microenvironment Cell Populations-counter (MCP-counter) algorithm. It was found that the CSRG signature, based on three genes (SERPINE1, PROC, and CFHR3), was significantly and independently associated with the OS in TCGA STAD patients (p < 0.001). Subsequently, we found that the high-risk STAD harbors more immune cell infiltration than the low-risk group, and the ESTIMATE results indicated that there exists a more stromal component in the tumor microenvironment of the high-risk groups. Compared to the low-risk group, the high-risk STAD patients had higher expressions of marker genes for immune checkpoint inhibitors (ICIs) and showed higher sensitivity to the chemotherapy agents (rapamycin, nilotinib, 5-fluorouracil, axitinib, DMOG, and JNK inhibitor VIII). The prognostic value of the CSRGs was further validated by nomogram plots, which revealed that it was superior to tumor TNM and pathologic stage. Finally, the three expression levels were evaluated in GES-1, HGC27, and AGS cells by qRT-PCR.

16.
Chem Sci ; 13(34): 9914-9920, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36128249

ABSTRACT

Singlet exciton fission (SF) is believed to have the potential to break the Shockley-Queisser limit for third-generation solar cell devices, so it has attracted great attention. Conventional linear acene based SF materials generally suffer from low triplet energy and poor photostability. We report herein two flavanthrene derivatives, EH-Fla and TIPS-Fla, as new photostable singlet exciton fission materials. These N-doped two-dimensional angular fused acenes have three sets of aromatic Clar sextets, making them significantly more stable than linear acenes with only one sextet. Time-resolved spectroscopy characterization reveals that the SF process occurs in the polycrystalline films of EH-Fla and TIPS-Fla, with maximal triplet yields of 32% and 159%, respectively. The SF processes of these two molecules are mediated by excimer states. In EH-Fla, the low-lying excimer prevents the SF process from occurring effectively, resulting in a low triplet yield. In contrast, the excimer state in TIPS-Fla is mixed with strong CT coupling, which prompts efficient SF and results in a high triplet yield. Our results show that flavanthrene is a promising SF chromophore for photoenergy conversion applications, while a fine-tune of the intermolecular interaction is crucial for achieving high SF efficiency.

17.
Front Chem ; 10: 957412, 2022.
Article in English | MEDLINE | ID: mdl-35928210

ABSTRACT

Single-atom catalysts (SACs) as the new frontier in heterogeneous catalysis have attracted increasing attention. However, the rational design of SACs with high catalytic activities for specified reactions still remains challenging. Herein, we report the rational design of a Pd1-PdNPs synergistic structure on 2,6-pyridinedicarbonitrile-derived covalent triazine framework (CTF) as an efficient active site for CO2 hydrogenation to formate under ambient conditions. Compared with the catalysts mainly comprising Pd1 and PdNPs, this hybrid catalyst presented significantly improved catalytic activity. By regulating the ratio of Pd1 to PdNPs, we obtained the optimal catalytic activity with a formate formation rate of 3.66 molHCOOM·molPd -1·h-1 under ambient conditions (30°C, 0.1 MPa). Moreover, as a heterogeneous catalyst, this hybrid catalyst is easily recovered and exhibits about a 20% decrease in the catalytic activity after five cycles. These findings are significant in elucidating new rational design principles for CO2 hydrogenation catalysts with superior activity and may open up the possibilities of converting CO2 under ambient conditions.

18.
Phys Chem Chem Phys ; 24(33): 19938-19947, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-35968889

ABSTRACT

The hydrogenation of CO2 into valuable chemical fuels reduces the atmospheric CO2 content and also has broad economic prospects. Support is essential for catalysts, but many of the reported support materials cannot meet the requirements of accessibility and durability. Herein, we theoretically designed a series of single-atom noble metals anchored on a SiO2 surface for CO2 hydrogenation using density functional theory (DFT) calculations. Through theoretical evaluation of the formation energy, hydrogen dissociation capacity, and activity of CO2 hydrogenation, we found that Ru@SiO2 is a promising candidate for CO2 hydrogenation to formic acid. The energy barrier of the rate-determining step of the entire conversion process is 23.9 kcal mol-1; thus, the reaction can occur under mild conditions. In addition, active and stable origins were revealed through electronic structure analysis. The charge of the metal atom is a good descriptor of the catalytic activity. The Pearson correlation coefficient (PCC) between metal charge and its CO2 hydrogenation barrier is 0.99. Two solvent models were also used to investigate hydrogen spillover processes and the reaction path was searched by the climbing image nudged-elastic-band (CI-NEB) method. The results indicated that the explicit solvent model could not be simplified into a few solvent molecules, leading to a large difference in the reaction paths. This work will serve as a reference for the future design of more efficient catalysts for CO2 hydrogenation.

19.
Article in English | MEDLINE | ID: mdl-35795275

ABSTRACT

Background: Shenqi pill (SQP), a traditional Chinese prescription, has proven to be effective in treating nonalcoholic fatty liver disease (NAFLD). However, its bioactive ingredients and underlying mechanisms remain elusive. Aim: We aimed to predict the active compounds, potential targets, and molecular mechanisms of SQP anti-NAFLD by applying network pharmacology and molecular docking methods. Methods: Active ingredients and related targets of SQP were obtained from the TCMSP database. Potential targets of NAFLD were acquired from OMIM and GeneCards databases. The STRING database and Cytoscape software analyzed the protein-protein interaction (PPI) network and core targets of overlapping genes between SQP and NAFLD. GO enrichment analysis and KEGG enrichment analysis were performed in the DAVID database. Finally, molecular docking was employed to find possible binding conformations of macromolecular targets. Results: 15 anti-NAFLD bioactive ingredients and 99 anti-NAFLD potential targets of SQP were determined using Network pharmacology. Quercetin, kaempferol, stigmasterol, diosgenin, and tetrahydroalstonine were the major active ingredients and AKT1, TNF, MAPK8, IL-6, and VEGFA were the key target proteins against NAFLD. The KEGG analysis suggested that the main pathways included PI3K/Akt signaling pathway, HIF-1 signaling pathway, MAPK signaling pathway, and TNF signaling pathway. Molecular docking predicted that quercetin, kaempferol, stigmasterol, diosgenin, and tetrahydroalstonine could bind with AKT1, TNF, and MAPK8. Conclusion: This study successfully predicts the active compounds, potential targets, and signaling pathways of SQP against NAFLD. Moreover, this study contributed to the application and development of SQP.

20.
Sci Rep ; 12(1): 10442, 2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35729279

ABSTRACT

Network function virtualization (NFV) decouples network functions from hardware devices. However, it introduces security challenges due to its reliance on software, which facilitates attacks. This security problem has a significant negative impact on the interests of users. Existing deployment methods are not suitable for SFC requests with a security demand, causing the use of substrate resources unreasonable and lower acceptance ratio. Moreover, a strict delay requirement is another challenge for NFV. To make the use of the substrate resources more reasonable and reduce the transmission delay, this paper proposes a security-constraint and function-mutex-constraint consolidation (SFMC) method for virtual network function (VNF) to reduce resource consumption and transmission delay. In addition, a security-aware service function chain (SASFC) deployment method for load balance and delay optimization is presented, which deploys service function chains according to the consolidated results of the SFMC method. The SASFC method first obtains a candidate server node set using resource, hosting capacity, security and node load constraints. It then obtains candidate paths according to the metric of the minimum transmission delay and link load constraint using the Viterbi algorithm. Finally, the path with the highest VNF security level match degree among the candidate paths is adopted to deploy virtual links, and the corresponding server nodes are employed to deploy VNFs. As a result, the SASFC method makes the use of substrate resources more reasonable. It improves the acceptance ratio and long-term average revenue to cost ratio, reduces transmission delay, and achieves load balancing. Experiment results show that when the number of VNFs is five, the acceptance ratio and long-term average revenue to cost ratio of the SASFC method are close to 0.75 and 0.88, which are higher than those of the compared methods. Its transmission delay and proportion of bottleneck nodes are 7.71 and 0.024, which are lower than those of the compared methods. The simulations demonstrate the effectiveness of the SASFC method.

SELECTION OF CITATIONS
SEARCH DETAIL
...