Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Article in Chinese | MEDLINE | ID: mdl-27514413

ABSTRACT

OBJECTIVE: To investigate the damage of blood-cerebrospinal fluid barrier (BCB) of rats induced by lead and nano-lead exposure in order to provide the basis for mechanism study of lead neurotoxicity. METHODS: 39 male rats were randomly divided into control group, lead acetate exposed group and nano-lead exposed group. Rats in lead acetate exposed group and nano-lead exposed group were given 20 mg/kg lead acetate or nano-lead by oral gavage and rats in control groups were given the same amount saline for 9 weeks.Morris maze was used to test the learning function, serum albumin and CSF albumin were determined by ELISA. Confocal laser scanning microscope was applied to detect ZO-1 and Occludin protein expression in choroid plexus, real time-PCR was used to test the expression of ZO-1 and Occludin mRNA expression. Pathological changes of choroid plexus cells were observed by the electron microscopy. RESULTS: Compared with the control group, the escape latency of rats in lead acetate or nano-lead exposure group were longer and times of across platform were less. The levels of CSF albumin and the CSF albumin index in lead acetate or nano-lead exposed rats were obviously higher, and the fluorescence intensity of ZO-1, Occludin as well as mRNA expressions were lower than those in control group(P<0.05). Compared with lead acetate exposed group, the levels of CSF albumin and the CSF albumin index in nano-lead exposure group were higher. The fluorescence intensity and mRNA expressions of ZO-1, Occludin in nano-lead exposure group were than those in lead acetate group(P<0.05). Electron microscopy revealed that lead acetate or nano-lead exposure could induce shorter microvillus of choroid plexus epithelial cells, mitochondrion destruction and partial disconnection in intracellular junctions between two adjacent epithelial cells. CONCLUSION: Lead acetate and nano-lead exposed can result in the blood-cerebrospinal fluid barrier damage, which may involve in the process of lead induced neurotoxicity. Meanwhile, nano-lead exposure can induced in more worse damage in terms of blood-results in blood-cerebrospinal fluid barrier function.


Subject(s)
Lead Poisoning , Animals , Blood-Brain Barrier , Choroid Plexus , Epithelial Cells , Learning , Male , Occludin , Organometallic Compounds , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...