Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Biochem Biophys Res Commun ; 723: 150186, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38830298

ABSTRACT

The aim of this study was to investigate the anti-cancer effects of resveratrol (RES) against gastric cancer (GC) and explore the potential mechanisms. We first measured the anti-cancer effects of RES on GC cell lines (i.e. AGS and HGC-27). Then protein-protein interaction (PPI) network was constructed, followed by GO and KEGG analysis to screen the possible targets. Molecular docking analysis was given to visualize the pharmacological effects of RES on GC cell lines. For the in vivo experiments, xenograft tumor model was established, and Western blot analysis was performed to determine the expression of protein screened by network pharmacology. Our results showed that RES could promote the apoptosis of GC cells. Five hub targets were identified by network pharmacology, including AKT1, TP53, JUN, ESR1 and MAPK14. GO and KEGG analyses revealed the PI3K/Akt/P53 signaling pathway was the most related signaling pathway. Molecular docking analysis indicated that RES could form 3 hydrogen bonds with AKT1 and 3 hydrogen bonds with TP53. The inhibitory effects of RES on the proliferation and promoting effects of RES on the apoptosis of AGS and HGC-27 cells were significantly reversed when blocking the PI3K-Akt signaling pathway using the LY294002. In vivo results showed that RES induced significant decrease of tumor volume and tumor weight without changing the body weight, or inducing significant cytotoxicities. Western blot analysis proved that RES could induce down-regulation of p-Akt and up-regulation of P53 in vivo. In conclusion, RES showed anti-cancer effects in GC by regulating the PI3K/Akt/P53 signaling pathway.

2.
Heliyon ; 10(7): e28618, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38586389

ABSTRACT

Background: The aim of this study was to investigate the effect of DNA methylation of Fork Head Box O3 (FOXO3a) on the process of epithelial-mesenchymal transition (EMT) in non-small cell lung cancer (NSCLC). Methods: The expressions of FOXO3a, DNA methyltransferase 1 (DNMT1), METTL3, and EMT-related proteins (E-cadherin and N-cadherin) were measured. The influence of 5-Aza-dC and DNMT1 on the methylation level in the promoter region of FOXO3a was examined through the application of methylation-specific PCR (MSP). Chromatin immunoprecipitation (ChIP) was employed to detect binding between DNMT1 and the FOXO3a promoter. Methylated RNA immunoprecipitation (MeRIP) was utilized to evaluate the level of DNMT1 N6-methyladenosine (m6A) methylation. The assessment of cell viability and invasion abilities of A549 cells was performed using Cell Counting Kit-8 (CCK-8) and Transwell assays, respectively. NSCLC xenograft mouse models were established by subcutaneously injected treated A549 cells into nude mice. Results: The expression levels of DNMT1 and DNA methylation level FOXO3a were found to be significantly increased, whereas FOXO3a expression was considerably decreased in NSCLC cell lines and NSCLC tumor tissues. Both 5-Aza-dC treatment and DNMT1 knockdown resulted in the down-regulation of DNA methylation levels of FOXO3a while simultaneously up-regulating the expression of FOXO3a. A ChIP assay demonstrated that DNMT1 has the ability to bind to the promoter region of FOXO3a. Furthermore, the knockdown of DNMT1 promoted E-cadherin expression, but inhibited expression of N-cadherin, cell viability, and invasion ability. However, the knockdown of FOXO3a hindered the effect of DNMT1 knockdown on EMT, cell viability, and invasion ability of A549 cells. This was evidenced by decreased E-cadherin expression and increased N-cadherin expression, as well as increased cell viability and invasion ability. Increased expression of DNMT1 resulted from m6A methylation of DNMT1, which was mediated by METTL3. Overexpression of DNMT1 decreased of E-cadherin expression while increased N-cadherin expression, cell viability, and invasion ability in METTL3-shRNA treated A549 cells. In xenograft mouse models, DNMT1 knockdown significantly reduced tumor volumes and tumor weight. DNMT1 knockdown upregulated the expression of FOXO3a and E-cadherin, while downregulated N-cadherin expression in vivo. Conclusion: METTL3-mediated m6A methylation of DNMT1 up-regulates FOXO3a promoter methylation, thereby promoting the progression of NSCLC.

3.
Cell Signal ; 118: 111125, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38432574

ABSTRACT

BACKGROUND: Parkinson's disease patients on chronic levodopa often suffer from motor complications, which tend to reduce their quality of life. Levodopa-induced dyskinesia (LID) is one of the most prevalent motor complications, often characterized by abnormal involuntary movements, and the pathogenesis of LID is still unclear but recent studies have suggested the involvement of autophagy. METHODS: The onset of LID was mimicked by chronic levodopa treatment in a unilateral 6-hydroxydopamine (6-OHDA) -lesion rat model. Overexpression of ΔFosB in HEK293 cells to mimic the state of ΔFosB accumulation. The modulation of the AMP-activated protein kinase (AMPK)-mediated autophagy pathway using by metformin, AICAR (an AMPK activator), Compound C (an AMPK inhibitor) and chloroquine (an autophagy pathway inhibitor). The severity of LID was assessed by axial, limb, and orofacial (ALO) abnormal involuntary movements (AIMs) score and in vivo electrophysiology. The activity of AMPK pathway as well as autophagy markers and FosB-ΔFosB levels were detected by western blotting. RT-qPCR was performed to detect the transcription level of FosB-ΔFosB. The mechanism of autophagy dysfunction was further explored by immunofluorescence and transmission electron microscopy. RESULTS: In vivo experiments demonstrated that chronic levodopa treatment reduced AMPK phosphorylation, impaired autophagosome-lysosomal fusion and caused FosB-ΔFosB accumulation in the striatum of PD rats. Long-term metformin intervention improved ALO AIMs scores as well as reduced the mean power of high gamma (hγ) oscillations and the proportion of striatal projection neurons unstable in response to dopamine for LID rats. Moreover, the intervention of metformin promoted AMPK phosphorylation, ameliorated the impairment of autophagosome-lysosomal fusion, thus, promoting FosB-ΔFosB degradation to attenuate its accumulation in the striatum of LID rats. However, the aforementioned roles of metformin were reversed by Compound C and chloroquine. The results of in vitro studies demonstrated the ability of metformin and AICAR to attenuate ΔFosB levels by promoting its degradation, while Compound C and chloroquine could block this effect. CONCLUSIONS: In conclusion, our results suggest that long-term metformin treatment could promote ΔFosB degradation and thus attenuate the development of LID through activating the AMPK-mediated autophagy pathway. Overall, our results support the AMPK-mediated autophagy pathway as a novel therapeutic target for LID and also indicate that metformin is a promising therapeutic candidate for LID.


Subject(s)
Dyskinesia, Drug-Induced , Metformin , Humans , Rats , Animals , Levodopa/pharmacology , Levodopa/therapeutic use , Antiparkinson Agents/pharmacology , AMP-Activated Protein Kinases , HEK293 Cells , Quality of Life , Dyskinesia, Drug-Induced/drug therapy , Dyskinesia, Drug-Induced/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Oxidopamine/therapeutic use , Autophagy , Chloroquine/pharmacology , Chloroquine/therapeutic use , Metformin/pharmacology , Disease Models, Animal
4.
Talanta ; 272: 125765, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38346358

ABSTRACT

The addition of reagents into preformed droplets is a crucial yet intricate task in droplet-based applications where sequential reactions is required. Pico-injection offers high throughput and robustness in accomplishing this task, but the existing pico-injection techniques work in an indiscriminate manner, making it difficult to target particular groups of droplets. Here we report image-activated pico-injection (imgPico) for label-free, on-demand reagent supplementation into droplets. The imgPico detects the droplets of interest by real-time image analysis and makes decisions for the downstream pico-injection operation. We studied the performance of different algorithms for the image analysis and optimized the experimental settings of the imgPico. In the validation experiment, the imgPico successfully injected fluorescent dyes into droplets encapsulating one, two, and three cells, respectively, as expected. We further demonstrated the utility of imgPico by targeting droplets encapsulating single cells in droplet-based single-cell RNA sequencing (scRNA-seq) using exceedingly high cell density, and the results showed that the imgPico effectively reduced the presence of doublets in the scRNA-seq data. With the merits of being label-free and versatile, the imgPico represents a technical advance with potential applications in single-cell analysis.


Subject(s)
Algorithms , Single-Cell Analysis , Single-Cell Analysis/methods , Cell Count
5.
Neurol Sci ; 45(1): 155-169, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37578631

ABSTRACT

OBJECTIVE: Our study aimed to explore the functional connectivity alterations between cortical nodes of resting-state networks in Parkinson's disease (PD) patients with wearing-off (WO) at different levels. METHODS: Resting-state functional magnetic resonance imaging was performed on 36 PD patients without wearing-off (PD-nWO), 30 PD patients with wearing-off (PD-WO), and 35 healthy controls (HCs) to extract functional networks. Integrity, network, and edge levels were calculated for comparison between groups. UPDRS-III, MMSE, MOCA, HAMA, and HAMD scores were collected for further regression analysis. RESULTS: We observed significantly reduced connectivity strength in the dorsal attention network and limbic network in the PD-WO group compared with the HC group. The PD-WO group showed a decreased degree of functional connectivity at 12 nodes, including the bilateral orbital part of the superior frontal gyrus, right olfactory cortex, left medial orbital part of the superior frontal gyrus, bilateral gyrus rectus, right parahippocampal gyrus, right thalamus, left Heschl's gyrus, right superior temporal gyrus part of the temporal pole, left middle temporal gyrus part of the temporal pole, and right inferior temporal gyrus. Furthermore, the PD-WO group showed a significantly lower degree of functional connectivity in the left orbital part of the superior frontal gyrus and right gyrus rectus than the PD-nWO group. Internetwork analysis indicated reduced functional connectivity in five pairs of resting-state networks. CONCLUSION: Our results demonstrated altered intra- and internetwork connections in PD patients with WO. These findings will facilitate a better understanding of the distinction between the network changes in PD pathophysiology.


Subject(s)
Brain Mapping , Parkinson Disease , Humans , Brain Mapping/methods , Magnetic Resonance Imaging/methods , Parkinson Disease/diagnostic imaging , Prefrontal Cortex , Temporal Lobe
6.
Brain Imaging Behav ; 17(6): 725-737, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37735325

ABSTRACT

Our study aimed to investigate the grey matter (GM) changes using voxel-based morphometry (VBM) in Parkinson's disease (PD) patients with wearing-off (WO). 3D-T1-weighted imaging was performed on 48 PD patients without wearing-off (PD-nWO), 39 PD patients with wearing-off (PD-WO) and 47 age and sex-matched healthy controls (HCs). 3D structural images were analyzed by VBM procedure with Statistical Parametric Mapping (SPM12) to detect grey matter volume. Widespread areas of grey matter changes were found in patients among three groups (in bilateral frontal, temporal lobes, lingual gyrus, inferior occipital gyrus, right precuneus, right superior parietal gyrus and right cerebellum). Grey matter reductions were found in frontal lobe (right middle frontal gyrus, superior frontal gyrus and precentral gyrus), right parietal lobe (precuneus, superior parietal gyrus, postcentral gyrus), right temporal lobe (superior temporal gyrus, middle temporal gyrus), bilateral lingual gyrus and inferior occipital gyrus in PD-WO group compared with the PD-nWO group. Our results suggesting that wearing-off may be associated with grey matter atrophy in the cortical areas. These findings may aid in a better understanding of the brain degeneration process in PD with wearing-off.


Subject(s)
Gray Matter , Parkinson Disease , Humans , Gray Matter/diagnostic imaging , Brain/diagnostic imaging , Parkinson Disease/diagnostic imaging , Parkinson Disease/complications , Magnetic Resonance Imaging/methods , Prefrontal Cortex
7.
Behav Brain Res ; 454: 114609, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37532003

ABSTRACT

AIM: Parkinson's disease is one of the most common neurodegenerative diseases. Excellent levodopa responsiveness has been proposed as a characteristic supporting feature in substantiating the PD diagnosis. However, a small portion of clinically established PD patients shows poor levodopa response. This study aims to investigate brain function alterations of PD patients with poor levodopa responsiveness by PET/MRI. METHOD: A total of 46 PD patients were recruited. They all completed 11C-CFT PET/MRI scans and the acute levodopa challenge test. Among these 46 PD patients, 42 participants further underwent 18F-FDG PET/MRI scans. Clinical variables regarding demographic data, disease features and cognition scales were also collected. Based on the improvement rate of UPDRS-III, PD patients were divided into non-responders (improvement rate < 33 %) and responders (improvement rate ≥ 33 %). Statistical parametric zapping was performed to analyze molecular imaging. Dopaminergic uptake and metabolism of 70 brain regions were converted to quantitative values and expressed as standard uptake value (SUV). SUV was further normalized by the cerebellum. The resulting SUV ratios and clinical variables were then compared by SPSS. RESULTS: The difference between levodopa non-responders (n = 17) and responders (n = 29) in the UPDRS III baseline was statistically significant and the former had a lower UPDRS III baseline (19 (10, 32), p<0.05). In contrast, no statistical difference between these two groups was found in age, gender, disease duration, cognition, motor subtype and Hoehn-Yahr stage. Dopaminergic uptake differences between levodopa non-responders (n = 17) and responders (n = 29) were shown in the left inferior frontal cortex (1.00 ± 0.09 vs 1.07 ± 0.08, p < 0.05 and FDR < 0.2), the right posterior cingulum (1.10 ± 0.10 vs 1.20 ± 0.13, p < 0.05 and FDR < 0.2) and the right insula (1.21 ± 0.12 vs 1.30 ± 0.10, p < 0.05 and FDR < 0.2). The metabolic alterations between levodopa non-responders (n = 16) and responders (n = 26) were shown in the right supplementary motor area (1.30 (1.18, 1.39) vs 1.41 (1.31, 1.53), p < 0.05 and FDR < 0.2), right precuneus (1.37 ± 0.10 vs 1.47 ± 0.18, p < 0.05 and FDR < 0.2), right parietal cortex (1.14 ± 0.15 vs 1.27 ± 0.21, p < 0.05 and FDR < 0.2), right supramarginal gyrus (1.16 (1.12, 1.26) vs 1.25 (1.14, 1.46), p < 0.05 and FDR < 0.2), right postcentral gyrus (1.15 (1.08, 1.32) vs 1.24 (1.17, 1.39), p < 0.05 and FDR < 0.2), medulla (0.75 ± 0.07 vs 0.80 ± 0.07, p < 0.05 and FDR < 0.2), right rolandic operculum (1.25 (1.18, 1.32) vs 1.33 (1.25, 1.50), p < 0.05 and FDR < 0.2), right olfactory (0.95 (0.91, 1.01) vs 1.01 (0.95, 1.15), p < 0.05 and FDR < 0.2), the right insula (1.15 (1.06, 1.22) vs 1.21 (1.12, 1.35), p < 0.05 and FDR < 0.2) and the left cerebellum crus (0.96 (0.91, 1.01) vs 0.92 (0.86, 0.96), p < 0.05 and FDR < 0.2). CONCLUSIONS: PD patients with poor response to levodopa showed less severe impairment of baseline motor symptoms, more severe dopaminergic deficits in the left inferior frontal, right posterior cingulate cortex and the right insula, and lower metabolism in the right supplementary motor area, right precuneus, right parietal cortex, right supramarginal gyrus, right postcentral gyrus, medulla, right rolandic operculum, right olfactory, the right insula and higher metabolism in the left cerebellum crus.


Subject(s)
Levodopa , Parkinson Disease , Humans , Levodopa/therapeutic use , Parkinson Disease/diagnostic imaging , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Fluorodeoxyglucose F18 , Positron-Emission Tomography , Dopamine , Magnetic Resonance Imaging/methods
8.
Heliyon ; 9(7): e18081, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37483764

ABSTRACT

Background: The symptoms of early Parkinson's disease (PD) are complex and hidden. The aim of this study is to explore and summarize the characteristics of the symptoms of drug naïve patients with PD. Objectives: and Methods Drug-naïve patients with PD and age-matched healthy controls were recruited from the outpatient clinic of Wuhan Union Hospital. The motor and non-motor symptoms were evaluated for further analysis using Unified Parkinson's Disease Rating Scale (UPDRS) I, II, and III; Sniffin' Sticks Screening 12 test; Mini-Mental State Exam (MMSE); Montreal Cognitive Assessment (MoCA); Hamilton Anxiety Scale (HAMA); and Hamilton Depression Scale (HAMD) scores. The acute levodopa challenge test (ALCT) was adopted to assess the reaction to dopaminergic treatment. Results: We recruited 80 drug-naïve patients with PD and 40 age-matched healthy controls (HCs). Approximately 53.7% of the patients were females. The mean onset age was 59.96 ± 10.40 years. The mean UPDRS I, II, and III were 2.01 ± 1.90, 6.18 ± 3.68, and 26.13 ± 12.09, respectively. Compared with HCs, PD patients had lower scores in MMSE and MoCA; and higher scores in HAMA and HAMD (p < 0.05). In ALCT, 54 patients showed good responses to levodopa while 26 patients did not. The mean improvement rate of UPDRS III was 34.09% at 120 min. Conclusion: The motor symptoms of patients with early PD were mild but virous. They also suffered from different non-motor symptoms. In ALCT, about two thirds of patients (54/80) with early PD showed good response to levodopa. Among four aspects of motor symptoms, bradykinesia reacted best to ALCT, while axial symptoms were the worst.

9.
Front Neurosci ; 16: 923708, 2022.
Article in English | MEDLINE | ID: mdl-35937879

ABSTRACT

Massive cerebral infarction (MCI) is a devastating condition and associated with high rate of morbidity and mortality. Hemorrhagic transformation (HT) is a common complication after acute MCI, and often results in poor outcomes. Although several predictors of HT have been identified in acute ischemic stroke (AIS), the association between the predictors and HT remains controversial. Therefore, we aim to explore the value of texture analysis on magnetic resonance image (MRI) for predicting HT after acute MCI. This retrospective study included a total of 98 consecutive patients who were admitted for acute MCI between January 2019 and October 2020. Patients were divided into the HT group (n = 44) and non-HT group (n = 54) according to the follow-up computed tomography (CT) images. A total of 11 quantitative texture features derived from images of diffusion-weighted image (DWI) or T2-weighted-Fluid-Attenuated Inversion Recovery (T2/FLAIR) were extracted for each patient. Receiver operating characteristic (ROC) analysis were performed to determine the predictive performance of textural features, with HT as the outcome measurement. There was no significant difference in the baseline demographic and clinical characteristics between the two groups. The distribution of atrial fibrillation and National Institutes of Health Stroke Scale (NIHSS) were significantly higher in patients with HT than those without HT. Among the textural parameters extracted from DWI images, six parameters, f2 (contrast), f3 (correlation), f4 (sum of squares), f5 (inverse difference moment), f10 (difference variance), and f11 (difference entropy), differs significantly between the two groups (p < 0.05). Moreover, five of six parameters (f2, f3, f5, f10, and f11) have good predictive performances of HT with the area under the ROC curve (AUC) values of 0.795, 0.779, 0.791, 0.780, and 0.797, respectively. However, the texture features f2, f3, and f10 in T2/FLAIR images were the only three significant predictors of HT in patients with acute MCI, but with a relatively low AUC values of 0.652, 0.652, and 0.670, respectively. In summary, our preliminary results showed DWI-based texture analysis has a good predictive validity for HT in patients with acute MCI. Multiparametric MRI texture analysis model should be developed to improve the prediction performance of HT following acute MCI.

10.
Front Plant Sci ; 13: 929892, 2022.
Article in English | MEDLINE | ID: mdl-35783936

ABSTRACT

Dormancy is a common survival strategy in plants to temporarily suspend visible growth under unsuitable conditions. The elaborate mechanism underlying bud break in perennial woody plants is gradually illustrated. Here, we identified a grape vine WRKY transcription factor, VvWRKY37, which was highly expressed in dormant buds. It was particularly induced by the application of exogenous abscisic acid, and depressed on exposure to gibberellin and low temperature (4°C) stress at the transcript level. The yeast one-hybrid assay confirmed that VvWRKY37 had a transcriptional activity. Ectopic over-expression of VvWRKY37 significantly delayed bud break of transgenic poplar plants. As an ABA-inducible gene, VvWRKY37 also depressed the expression of ABA catabolic gene CYP707As and enhanced the accumulation of endogenous ABA in transgenic poplar plants. The molecular pieces of evidence showed that VvWRKY37 preferentially recognized and bound W-box 5'-G/CATTGACT/C/G-3' cis-element in vitro. Additionally, VvABI5 and VvABF2 acted as the upstream transcriptional activators of VvWRKY37 via protein-DNA interactions. Taken together, our findings provided valuable insights into a new regulatory mechanism of WRKY TF by which it modulates bud break through ABA-mediated signaling pathways.

11.
Front Neurol ; 12: 758345, 2021.
Article in English | MEDLINE | ID: mdl-34858315

ABSTRACT

After long-term use of levodopa, Parkinson's patients almost inevitably develop dyskinesia, a kind of drug side effect manifesting as uncontrollable choreic movements and dystonia, which could be crippling yet have limited therapeutic options. Transcranial magnetic stimulation is the most widely studied non-invasive neuromodulation technology to treat levodopa-induced dyskinesia. Many studies have shown that transcranial magnetic stimulation has beneficial effects on levodopa-induced dyskinesia and is patient-tolerable, barely with reported adverse effects. Changes in brain connectivity, neuroplasticity, neurotransmitter, neurorestoration, and blood flow modulation could play crucial roles in the efficacy of transcranial magnetic stimulation for levodopa-induced dyskinesia. The appearance of new modes and application for emerging targets are possible solutions for transcranial magnetic stimulation to achieve sustained efficacy. Since the sample size in all available studies is small, more randomized double-blind controlled studies are needed to elucidate the specific treatment mechanisms and optimize treatment parameters.

12.
Plant Sci ; 311: 111008, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34482911

ABSTRACT

The environmental damage caused by ozone is of increasing concern globally. The phosphoproteomics approach was used to explore the mechanisms underlying grapevine tolerance to ozone stress and identify phosphoproteins altered by ozone treatment. Results revealed that 194 of 2275 quantitatively analyzed phosphoproteins were significantly regulated after ozone treatment. Biological pathways related to transport were significantly enriched by the differentially regulated phosphoproteins. Among these phosphoproteins, the phosphorylation of RING E3 ligase in grape (V. vinifera KEEP ON GOING, VvKEG) decreased after ozone treatment. Over-expression of VvKEG in Arabidopsis decreased abscisic acid (ABA) sensitivity and enhanced ozone tolerance. Furthermore, VvKEG interacted with the ABA-responsive transcription factor ABSCISIC ACID-INSENSITIVE3 (ABI3). The exogenous application of ABA on grapevine leaves significantly influenced chlorophyll fluorescence, chlorophyll, and malondialdehyde (MDA) contents under ozone treatment; however, treatment with 150 µmol ABA aggravated ozone stress. These results indicate that phosphorylation modification provides information on ozone-induced processes and that VvKEG plays a critical role in these processes via regulation of the ABA signaling pathway in grape.


Subject(s)
Adaptation, Physiological/genetics , Ozone/adverse effects , Stress, Physiological/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Vitis/genetics , Vitis/physiology , Crops, Agricultural/genetics , Crops, Agricultural/physiology , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Genotype , Phosphorylation , Proteomics
13.
Heliyon ; 7(6): e07237, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34189296

ABSTRACT

Enzymes can aid in optimal feed stock utilization when used as feed additives. A range of toxicological studies were performed to evaluate the safety profile of a novel phytase (phytase HM) from Citrobacter b raakii produced in Aspergillus oryzae. Phytase HM was found to be non-mutagenic and non-clastogenic in in vitro tests. Further, the phytase HM preparation did not exhibit irritative potential to the eye and skin when applied in in vitro models. A 13-week subchronic toxicity study with oral administration of phytase HM to rats did not show any adverse effects. Efficacy studies showed that the dietary supplementation of this phytase significantly improved growth performance and bone mineralization in broiler chickens and piglets fed P-deficient diets, and increased retention of phosphorus (P) and calcium (Ca), and phytate-P degradation in excreta of broiler chickens in a dose-dependent manner. In conclusion, there are no safety concerns using phytase HM as a feed additive and the phytase is well tolerated by broiler chickens and pigs. Further, phytase HM improves with high efficacy the growth performance in both broiler chickens and pigs.

14.
Poult Sci ; 100(2): 993-997, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33518153

ABSTRACT

A total of 480 male Cobb 500 broiler chicks were assigned to one of 6 dietary treatments to explore the energy equivalence of myo-inositol compared with dextrose. The 6 dietary treatments included a corn and soy-based control ration formulated with 5% anhydrous dextrose and 5 further diets that were generated by the sequential displacement of increments of 1% dextrose with myo-inositol. Each diet was fed to 8 replicate cages of 10 chicks per cage from day 8 to day 18 after hatch. The BW gain, feed intake, and feed conversion ratio (FCR) were measured, and on day 15 to day 17, excreta were collected to estimate the total tract nutrient retention. Ileal digestibility of nutrients and tibia mineral content was assessed on day 18. The displacement of dextrose with myo-inositol generated a significant linear reduction in the FCR that did not reach a plateau at 5% dietary inclusion of myo-inositol. There was no effect of the displacement of dextrose with myo-inositol on bone mineral concentration. However, supplemental myo-inositol linearly reduced ileal digestibility of DM, calcium, and ileal digestible energy. Myo-inositol addition resulted in a significant linear increase in the total tract retention of CP. It can be concluded that myo-inositol has an energy equivalence equal to approximately 78% of that of dextrose for young broiler chicks but exerts a range of extra caloric effects that improve feed efficiency and may influence nitrogen (N) retention and the uric acid cycle. Future work should focus on the role of phytase and myo-inositol on uric acid, creatine kinase, and other metabolites involved in renal function and biochemical flows of N in urine and feces in nonruminants.


Subject(s)
6-Phytase , Animal Feed , Chickens/physiology , Digestion/physiology , Inositol/administration & dosage , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Bone and Bones/chemistry , Chickens/growth & development , Diet/veterinary , Dietary Supplements , Glucose/administration & dosage , Ileum/physiology , Male , Nutrients , Random Allocation
15.
J Neural Transm (Vienna) ; 128(1): 37-48, 2021 01.
Article in English | MEDLINE | ID: mdl-33392827

ABSTRACT

Information about Parkinson's disease (PD) patients with severe COVID-19 is scarce. We aimed to analyze the clinical characteristics, outcomes, and risk factors affecting the prognosis of PD patients with severe COVID-19 infection. Clinical data of severe COVID-19 patients admitted at the Union Hospital, Wuhan between 28th January and 29th February 2020 were collected and analyzed. 10 patients (1.96%) had a medical history of PD with a mean (SD) age of 72.10 (± 11.46) years. The clinical characteristics and outcomes of severe COVID-19 with and without PD patients were then compared. There was no significant difference in overall mortality between the PD and non-PD patients with severe COVID-19 (p > 0.05). In PD patients with severe COVID-19, the proportion of patients with critical type, disturbance of consciousness, incidence of complications, white blood cells count and neutrophils counts on admission seem higher in the non-survivors. PD patients with older age, longer PD duration, and late stage PD may be highly susceptible to critical COVID-19 infection and bad outcome. The PD patients with consciousness disorders and complications that progressed rapidly are at increased risk of death.


Subject(s)
COVID-19/epidemiology , Consciousness Disorders/epidemiology , Parkinson Disease/epidemiology , Aged , Aged, 80 and over , COVID-19/complications , COVID-19/mortality , China/epidemiology , Comorbidity , Consciousness Disorders/etiology , Female , Humans , Male , Middle Aged , Parkinson Disease/mortality , Retrospective Studies , Risk Factors , Severity of Illness Index
16.
ACS Appl Mater Interfaces ; 12(11): 13265-13274, 2020 Mar 18.
Article in English | MEDLINE | ID: mdl-32105063

ABSTRACT

E-textile consisting of natural fabrics has become a promising material to construct wearable sensors due to its comfortability and breathability on the human body. However, the reported fabric-based e-textile materials, such as graphene-treated cotton, silk, and flax, generally suffer from the electrical and mechanical instability in long-term wearing. In particular, fabrics on the human body have to endure heat variation, moisture evaporation from metabolic activities, and even the immersion with body sweat. To face the above challenges, here we report a wool-knitted fabric sensor treated with graphene oxide (GO) dyeing followed by l-ascorbic acid (l-AA) reduction (rGO). This rGO-based strain sensor is highly stretchable, washable, and durable with rapid sensing response. It exhibits excellent linearity with more than 20% elongation and, most importantly, withstand moisture from 30 to 90% (or even immersed with water) and still maintains good electrical and mechanical properties. We further demonstrate that, by integrating this proposed material with the near-field communication (NFC) system, a batteryless, wireless wearable body movement sensor can be constructed. This material can find wide use in smart garment applications.


Subject(s)
Graphite/chemistry , Wearable Electronic Devices , Wool Fiber , Materials Testing , Mechanical Phenomena , Wettability
17.
ACS Appl Mater Interfaces ; 12(1): 1359-1367, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31820907

ABSTRACT

We propose a design strategy to fabricate a flexible bend sensor (BS) with ultrasensitivity toward airflow using all-poly(vinylidene fluoride) (PVDF) nanofiber web-based sensing elements and electrodes to monitor human respiration. The unique electrospinning (rotational speed of collector of 2000 rpm and tip-to-collector distance of 4 cm) with silver nanoparticle interfacing was introduced to prepare a Ag-doped oriented PVDF nanofiber web with high ß-phase content as a sensing element (AgOriPVDF, ß-phase crystallinity ∼44.5%). After that, a portion of the prepared AgOriPVDF was processed into a flexible and electrically conductive electrode through an electroless silver plating technique (SP-AgOriPVDF). Interestingly, the encapsulated AgOriPVDF BS with the SP-AgOriPVDF electrode exhibited superior piezoelectric bending response (open-circuit peak-to-peak output voltage, Vp-p ≈ 4.6 V) to injected airflow, which is more than 200 times higher than that of the unpackaged randomly aligned PVDF nanofiber web BS with a conductive tape electrode (Vp-p ≈ 0.02 V). In addition, the factors influencing the bend sensitivity of the BS such as the ß-phase content, nanofiber orientation, flexibility of the electrode, and so forth were thoroughly analyzed and then discussed. We also demonstrated that the AgOriPVDF BS has sufficient capability to detect and identify various respiratory signals, presenting a great potential for wearable applications, for example, smart respiratory protective equipment.


Subject(s)
Biosensing Techniques , Metal Nanoparticles/chemistry , Monitoring, Physiologic , Nanofibers/chemistry , Electric Conductivity , Electrodes , Humans , Polymers/chemistry , Polyvinyls/chemistry , Silver/chemistry
18.
Cell Prolif ; 53(1): e12711, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31737960

ABSTRACT

OBJECTIVES: Vascular disorders are associated with phenotypical switching of vascular smooth muscle cells (VSMCs). We investigated the effect of bone morphogenetic protein (BMP)-2 in controlling VSMC phenotype and vascular disorder progression. Lysine (K)-specific demethylase 1A (KDM1A) has been identified to target BMP-2 and is employed as a therapeutic means of regulating BMP-2 expression in VSMCs. MATERIALS AND METHODS: VSMCs were stimulated with angiotensin II, and the expression of KDM1A and BMP-2 was detected. VSMC proliferation, apoptosis, and phenotype were evaluated. An in vivo aortic injury model was established, and VSMC behaviour was evaluated by the expression of key markers. The activation of BMP-2-associated signalling pathways was examined. RESULTS: We confirmed the inhibitory effect of KDM1A on BMP-2 activity and demonstrated that KDM1A inhibition prevented VSMC transformation from a contractile to synthetic phenotype. In angiotensin II-treated VSMCs, KDM1A inhibition triggered a decrease in cell proliferation and inflammatory response. In vivo, KDM1A inhibition alleviated post-surgery neointimal formation and collagen deposition, preventing VSMCs from switching into a synthetic phenotype and suppressing disease onset. These processes were mediated by BMP-2 through canonical small mothers against decapentaplegic signalling, which was associated with the activation of BMP receptors 1A and 1B. CONCLUSIONS: The regulatory correlation between KDM1A and BMP-2 offers insights into vascular remodelling and VSMC phenotypic modulation. The reported findings contribute to the development of innovative strategies against vascular disorders.


Subject(s)
Bone Morphogenetic Protein 2/metabolism , Histone Demethylases , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Neointima/metabolism , Vascular Remodeling , Animals , Cells, Cultured , Histone Demethylases/antagonists & inhibitors , Histone Demethylases/metabolism , Hyperplasia , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Neointima/pathology , Rats , Rats, Sprague-Dawley
19.
Heliyon ; 5(10): e02600, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31687489

ABSTRACT

The safety of a novel microbial muramidase (Muramidase 007) as a feed additive for swine was evaluated in a target animal safety study (Experiment 1). Forty weanling pigs were allotted to 4 dietary treatments: T1 control group, and 3 groups receiving Muramidase 007 in increasing doses: T2 65,000 (1X), T3 325,000 (5X) and T4 650,000 (10X) LSU(F)/kg feed. The efficacy of Muramidase 007 on growth performance was evaluated in a feeding experiment (Experiment 2). A total of 288 piglets were allotted to two groups: T1 control group and T2 receiving Muramidase 007 at 50,000 (LSU(F)/kg feed. In Experiment 1, no growth depression of pigs was observed. No adverse effects of Muramidase 007 were observed for any of the hematology and serum chemistry parameters measured or on pig health status. Post-mortem evaluation showed no adverse effects due to Muramidase 007 supplementation in the gross pathology or in the histological examination. In Experiment 2, Muramidase 007 significantly increased overall (d 0-42) average daily gain (ADG) and tended to improve overall average daily feed intake (ADFI) and day 42 body weight of nursery pigs and had no effect on feed conversion ratio (FCR). Overall, results of these studies show that there were no adverse effects of Muramidase 007 compared to the control group.

20.
Hortic Res ; 6: 102, 2019.
Article in English | MEDLINE | ID: mdl-31645957

ABSTRACT

WRKY transcription factors are involved in defense responses caused by biotic stresses. Phylloxera (Daktulosphaira vitifoliae Fitch), a pest widespread in viticulture, elicits transcriptional reprogramming of plant defense-associated components, such as regulons related to WRKYs and salicylic acid (SA) signaling. In this study, we characterized WRKY46, a WRKY transcription factor responsible for phylloxera attack, and revealed the molecular mechanism for WRKY-mediated defense responses to phylloxera. qRT-PCR and GUS staining analyses revealed that WRKY46 is induced in response to phylloxera damage and mechanical wounding. VvWRKY46 is a nuclear-localized transcription factor that activates its downstream target VvCHIB by direct protein-DNA interaction. Regulons involved in the SA-mediated defense response were regulated during incompatible interactions between "1103 Paulsen" rootstock and phylloxera. In addition, WRKY46 exhibited a higher transcript abundance in "1103 Paulsen" than in "Crimson Seedless", regardless of whether the plants were infected with phylloxera. Furthermore, the enhanced expression of VvWRKY46 significantly attenuated phylloxera attack and delayed nymph development of composite grape plants. In summary, we demonstrated that WRKY46 plays a role in the SA-mediated defense-regulatory network by directly binding to the downstream structural gene VvCHIB. The phylloxera-responsive gene WRKY46 was identified, which could improve the understanding of the basic mechanism of grapevine in response to phylloxera.

SELECTION OF CITATIONS
SEARCH DETAIL
...