Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Publication year range
1.
Zhonghua Nan Ke Xue ; 28(4): 295-300, 2022 Apr.
Article in Chinese | MEDLINE | ID: mdl-37477449

ABSTRACT

OBJECTIVE: To investigate the effect of exosomes derived from mouse bone marrow mesenchymal stem cells (BMSC) on the injury of TM3 Leydig cells induced by cyclophosphamide (CP). METHODS: The exosomes from BMSCs were extracted by ultrahigh speed centrifugation, and their particle size and morphology observed under the electron microscope, and their typical marker proteins examined by Western blot. The uptake of exosomes by TM3 Leydig cells was observed by co-culturing the exosomes with the TM3 cells. The viability and apoptosis rate of the TM3 cells in the normal control, CP-induction and CP+exosomes groups were detected using the CCK-8 method and flow cytometry respectively. ELISA was used to measure the testosterone (T) level in the cell supernatant, and Western blot adopted to determine the expression level of the steroidogenic acute regulatory (StAR) protein, a key enzyme related to T synthesis. RESULTS: The viability of the TM3 Leydig cells was markedly decreased and the apoptosis rate of the cells remarkably increased in the CP-induction group compared with that in the normal control, but both significantly restored after co-culture with exosomes (P < 0.01 and P < 0.05). The T level in the supernatant and the expression of the StAR protein in the cells were lower in the CP-induction than in the normal control group, but both dramatically increased in the CP+exosomes group (P < 0.01). CONCLUSION: Exosomes from BMSCs and protect TM3 Leydig cells from cyclophosphamide-induced injury and restore the level of testosterone secreted by the TM3 cells to a certain extent.


Subject(s)
Exosomes , Mesenchymal Stem Cells , Male , Mice , Animals , Leydig Cells , Testosterone , Apoptosis , Bone Marrow Cells
2.
Asian J Androl ; 23(4): 386-391, 2021.
Article in English | MEDLINE | ID: mdl-33565424

ABSTRACT

Spermatogenic dysfunction caused by cyclophosphamide (CP) chemotherapy has seriously influenced the life quality of patients. Unfortunately, treatments for CP-induced testicular spermatogenic dysfunction are limited, and the molecular mechanisms are not fully understood. For the first time, here, we explored the effects of bone marrow mesenchymal stem cell-derived exosomes (BMSC-exos) on CP-induced testicular spermatogenic dysfunction in vitro and in vivo. BMSC-exos could be taken up by spermatogonia (GC1-spg cells). CP-injured GC1-spg cells and BMSC-exos were cocultured at various doses, and then, cell proliferation was measured using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay. In addition, photophosphorylation of extracellular-regulated kinase (ERK), p38 mitogen-activated protein kinase (p38MAPK), and protein kinase B (AKT) proteins was evaluated by western blotting as well as apoptosis in GC1-spg cells measured using flow cytometry. Treatment with BMSC-exos enhanced cell proliferation and reduced apoptosis of CP-injured GCI-spg cells. Phosphorylated levels of ERK, AKT, and p38MAPK proteins were reduced in CP-injured spermatogonia when co-treated with BMSC-exos, indicating that BMSC-exos acted against the reproductive toxicity of CP via the p38MAPK/ERK and AKT signaling pathways. In experiments in vivo, CP-treated rats received BMSC-exos by injection into the tail vein, and testis morphology was compared between treated and control groups. Histology showed that transfusion of BMSC-exos inhibited the pathological changes in CP-injured testes. Thus, BMSC-exos could counteract the reproductive toxicity of CP via the p38MAPK/ERK and AKT signaling pathways. The findings provide a potential treatment for CP-induced male spermatogenic dysfunction using BMSC-exos.


Subject(s)
Bone Marrow Transplantation/standards , Cyclophosphamide/adverse effects , Protective Factors , Bone Marrow Transplantation/methods , Bone Marrow Transplantation/statistics & numerical data , Exosomes/metabolism , Humans , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism
3.
Zhonghua Nan Ke Xue ; 26(9): 771-776, 2020 Sep.
Article in Chinese | MEDLINE | ID: mdl-33377697

ABSTRACT

OBJECTIVE: To investigate the effects of silencing the semenogelin 1 (SEMG1) protein on the cycle and apoptosis of the spermatogonia germ cell line (GC-1 spg). METHODS: SEMG1-specific siRNA was transfected into GC-1 spg cells by lipofectamine 2000 (the siRNA-SEMG1 group), the relative expression levels of the SEMG1 protein in the GC-1 spg cells of the siRNA-SEMG1, blank control and negative control groups were detected by Western blot, and the apoptosis and cycle of the cells in different groups were determined by flow cytometry. RESULTS: The expression of the SEMG1 protein in the GC-1 spg cells was dramatically decreased in the siRNA-SEMG1 group compared with those in the blank and negative control groups (1.80±0.05 vs 2.51±0.13 and 2.50±0.12, P < 0.01), but the apoptosis rate was remarkably higher in the former than in the latter two groups (ï¼»6.77 ± 0.15ï¼½% vs ï¼»0.70 ± 0.06ï¼½% and ï¼»0.8 ± 0.06ï¼½%, P < 0.01). No statistically significant difference was observed in the cell cycles among the three groups (P > 0.05). In addition, Western blot showed that the expression of the caspase-3 protein was significantly higher and that of the BCL2 protein markedly lower in the siRNA-SEMG1 than in the blank and negative control groups (P < 0.05). CONCLUSIONS: SEMG1-specific siRNA can effectively silence the expression of the SEMG1 protein in GC-1 spg cells and promote their apoptosis.


Subject(s)
Apoptosis , Cell Cycle , Gene Silencing , Seminal Vesicle Secretory Proteins/genetics , Animals , Cell Line, Tumor , Cell Proliferation , Male , Mice , RNA, Small Interfering/genetics , Transfection
4.
Toxicol Mech Methods ; 26(5): 311-8, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27097871

ABSTRACT

Geraniin, a typical ellagitannin isolated from Phyllanthus urinaria Linn, has been found to possess a range of bioactive properties. In the present study, we found that Geraniin showed potent anti-proliferative effects on human breast cancer MCF-7 cells. The IC50 values were 9.94, 17.98 and 42.32 µM after 72-, 48- and 24-h treatment, respectively. Meanwhile, Geraniin could remarkably disrupt mitochondrial membrane potential and arrest S phase cell cycle. Western-blot analysis showed that Geraniin induced phosphorylation of the anti-apoptotic Bcl-2, and the cleavage of poly (ADP-ribose) polymerase (PARP) and caspase-3 in MCF-7 cells. Moreover, Geraniin treatment activated p38 mitogen-activated protein kinase (p38 MAPK) and the effect was blunted in MCF-7 cells with the treatment of a specific p38 inhibitor SB203580. Geraniin could generate intracellular reactive oxygen species (ROS), activate p38 MAPK then induce the apoptosis in MCF-7 cells, such phenomena was abrogated by pretreatment with N-acetyl-l-cysteine. In general, these results support the conclusion that Geraniin-induced apoptosis is mediated via ROS-mediated stimulation of p38 MAPK signaling.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Glucosides/pharmacology , Hydrolyzable Tannins/pharmacology , Reactive Oxygen Species/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Culture Techniques , Cell Cycle/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Flow Cytometry , Glucosides/isolation & purification , Humans , Hydrolyzable Tannins/isolation & purification , MCF-7 Cells , Membrane Potential, Mitochondrial/drug effects , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...