Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Sci Food Agric ; 104(5): 3100-3112, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38072653

ABSTRACT

BACKGROUND: Curcumin (CUR) and anthocyanins (ACN) are recommended due to their bioactivities. However, their nutritional values and health benefits are limited by their low oral bioavailability. The incorporation of bioactive substances into polysaccharide-protein composite nanoparticles is an effective way to enhance their bioavailability. Accordingly, this study explored the fabrication of bovine serum albumin (BSA)-fucoidan (FUC) hybrid nanoparticles using a two-step pH-driven method for the delivery of CUR and ACN. RESULTS: Under a 1:1 weight ratio of BSA to FUC, the point of zero charge moved from pH ⁓ 4.7 for BSA to around 2.5 for FUC-coated BSA, and the formation of BSA-FUC nanocomplex was pH-dependent by showing the maximum CUR emission wavelength shifting from 546 nm (CUR-loaded BSA-FUC at pH 4.7) and 544 nm (CUR/ACN-loaded BSA-FUC nanoparticles at pH 4.7) to 540 nm (CUR-loaded BSA-FUC at pH 6.0) and 539 nm (CUR/ACN-loaded BSA-FUC nanoparticles at pH 6.0). Elevated concentrations of NaCl from 0 to 2.5 mol L-1 caused particle size increase from about 250 to about 800 nm, but showing no effect on the encapsulation efficiency of CUR. The CUR and ACN entrapped, respectively, in the inner and outer regions of the BSA-FUC nanocomplex were released at different rates. After incubation for 10 h, more than 80% of ACN was released, while less than 25% of CUR diffused into the receiving medium, which fitted well to Logistic and Weibull models. CONCLUSION: In summary, the BSA-FUC nanocomposites produced by a two-step pH-driven method could be used for the co-delivery of hydrophilic and hydrophobic nutraceuticals. © 2023 Society of Chemical Industry.


Subject(s)
Curcumin , Nanoparticles , Curcumin/chemistry , Anthocyanins , Drug Carriers/chemistry , Polysaccharides , Nanoparticles/chemistry , Hydrogen-Ion Concentration , Particle Size , Serum Albumin, Bovine/chemistry
2.
Nanotechnology ; 32(1): 015706, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33043907

ABSTRACT

Photocatalytic degradation of pollutants has been proved to be an effective strategy for wastewater treatment. Herein, TiO2 nanoparticles were synthesized on a Ti3C2 matrix by in situ growth, forming Z-scheme TiO2@Ti3C2/Cd0.5Zn0.5S (TO/CZS) multilevel structured nanocomposites via one-step hydrothermal route. The effects of hydrothermal temperature and Cd0.5Zn0.5S content on microstructure and properties of composites were assessed. TO/CZS nanocomposites were probed into phase composition, morphological and optical properties with x-ray diffractometer, infrared radiation, scanning electron microscope and UV-vis reflective spectra. Following the hydrothermal reaction at 160 °C for 12 h, TiO2 nanoparticles of 30 nm in diameter were generated in situ on Ti3C2 lamina and Cd0.5Zn0.5S particles were evenly distributed on the Ti3C2 matrix. The photocatalytic activity of TO/CZS composites were evaluated, which found that degradation rate constant (k = 0.028 min-1) of TO/CZS-40 on Rhodamine B was 5.19 times that of pure TiO2 and 4.48 times that of Cd0.5Zn0.5S. Through anchoring Ti3C2 as an electron transition mediator and combination with TiO2 and Cd0.5Zn0.5S, the new Z-scheme between TiO2 oxidized by Ti3C2 and Cd0.5Zn0.5S establishes a multilevel structure of separating electron-hole pairs. This work demonstrates a valid way to control electrons and hole transfer directions efficiently through designing multilevel semiconductor structural designs.

SELECTION OF CITATIONS
SEARCH DETAIL
...