Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(27): 35024-35032, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38935758

ABSTRACT

Inorganic metal sulfides have received extensive investigation as anode materials in lithium-ion batteries (LIBs). However, applications of crystalline organic hybrid metal sulfides as anode materials in LIBs are quite rare. In addition, combining the nanoparticles of crystalline organic hybrid metal sulfides with conductive materials is expected to enhance the electrochemical lithium storage performance. Nevertheless, due to the difficulty of harvesting the nanoparticles of crystalline organic hybrid metal sulfides, this approach has never been tried to date. Herein, nanoparticles of a crystalline organic hybrid cadmium antimony sulfide (1,4-DABH2)Cd2Sb2S6 (DCAS) were prepared by a top-down method, including the procedures of solvothermal synthesis, ball milling, and ultrasonic pulverization. Thereafter, the nanoparticles of DCAS with sizes of ∼500 nm were intercalated into graphene oxide nanosheets through a freeze-drying treatment and a DCAS@GO composite was obtained. Compared with the reported Sb2S3- and CdS-based composites, the DCAS@GO composite exhibited superior electrochemical Li+ ion storage performance, including a high capacity of 1075.6 mAh g-1 at 100 mA g-1 and exceptional rate tolerances (646.8 mAh g-1 at 5000 mA g-1). In addition, DCAS@GO can provide a high capacity of 705.6 mAh g-1 after 500 cycles at 1000 mA g-1. Our research offers a viable approach for preparing the nanoparticles of crystalline organic hybrid metal sulfides and proves that intercalating organic hybrid metal sulfide nanoparticles into GO nanosheets can efficiently boost the electrochemical Li+ ion storage performance.

2.
Mar Drugs ; 22(1)2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38248640

ABSTRACT

Chemical epigenetic cultivation of the sponge-derived fungus Pestalotiopsis sp. SWMU-WZ04-1 contributed to the identification of twelve polyketide derivatives, including six new pestalotiopols E-J (1-6) and six known analogues (7-12). Their gross structures were deduced from 1D/2D NMR and HRESIMS spectroscopic data, and their absolute configurations were further established by circular dichroism (CD) Cotton effects and the modified Mosher's method. In the bioassay, the cytotoxic and antibacterial activities of all compounds were evaluated. Chlorinated benzophenone derivatives 7 and 8 exhibited inhibitory effects on Staphylococcus aureus and Bacillus subtilis, with MIC values varying from 3.0 to 50 µg/mL. In addition, these two compounds were cytotoxic to four types of human cancer cells, with IC50 values of 16.2~83.6 µM. The result showed that compound 7 had the probability of being developed into a lead drug with antibacterial ability.


Subject(s)
Pestalotiopsis , Polyketides , Humans , Anti-Bacterial Agents/pharmacology , Bacillus subtilis , Fungi , Polyketides/pharmacology
3.
Article in English | MEDLINE | ID: mdl-36317753

ABSTRACT

Carbon-coated metal chalcogenide composites have been demonstrated as one type of promising anode material for sodium-ion batteries (SIBs). However, combining carbon materials with micronanoparticles of metal chalcogenide always involve complicated processes, such as polymer coating, carbonization, and sulfidation/selenization. To address this issue, herein, we reported a series of carbon-coated FexSey@CN (FexSey = FeSe2, Fe3Se4, Fe7Se8) composites prepared via the thermodynamic transformation of a crystalline organic hybrid iron selenide [Fe(phen)2](Se4) (phen = 1,10-phenanthroline). By pyrolyzing the bulk crystals of [Fe(phen)2](Se4) at different temperatures, FexSey microrods were formed in situ, where the nitrogen-doped carbon layers were coated on the surface of the microrods. Moreover, all the as-prepared FexSey@CN composites exhibited excellent sodium-ion storage capabilities as anode materials in SIBs. This work proves that crystalline organic hybrid metal chalcogenides can be used as a novel material system for the in situ formation of carbon-coated metal chalcogenide composites, which could have great potential in the application of electrochemical energy storage.

4.
Front Chem ; 10: 988459, 2022.
Article in English | MEDLINE | ID: mdl-36267656

ABSTRACT

Dendrobium nobile (Lindl.) have long been used as herbal tea and a traditional herbal medicine to treat Alzheimer's disease (AD). In the current study, nineteen compounds (1-19), including two new vitamin E homologues (1-2), one new sesquiterpene (6), and two new dendrobines (7, 8), were isolated and identified from stems of Dendrobium nobile. Their structures were elucidated on the basis of NMR, 13C NMR calculation, and DP4+ probability analyses. The absolute configurations of new compounds were determined by electronic circular dichroism (ECD) data analysis. Antioxidant, anti-inflammatory, and cytotoxic activities of isolated compounds were evaluated. Among them, compound 2 demonstrated significant antioxidant activity compared with ascorbic acid (VC), while compounds 2 and 4 also exhibited an equal effect to positive control cisplatin. This study on the biological activity of the new vitamin E homologues from Dendrobium nobile may indicate its potential application in the pharmaceutical and food industries.

5.
Ann Clin Microbiol Antimicrob ; 21(1): 38, 2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36038932

ABSTRACT

BACKGROUND: Antibiotic-resistant Gram-negative bacteria are becoming a major public health threat such as the important opportunistic pathogen Pseudomonas aeruginosa (P. aeruginosa). The present study investigated enhancement of the linezolid spectrum, which is normally used to treat Gram-positive bacteria, at inhibiting P. aeruginosa growth. METHODS: The checkerboard test or time-kill assay were carried out to determine the antibacterial effects of linezolid in cooperation with polymyxin B octapeptide PBOP (LP) against P. aeruginosa based on in vitro model. The protective effect of LP against P. aeruginosa infection was assessed based on a Caenorhabditis elegans (C. elegans) model. RESULTS: The synergistic activity and antibacterial effects were significantly increased against P. aeruginosa by LP treatment, while linezolid and PBOP as monotherapies exhibited no remarkably bactericidal activity against the clinical strains. Additionally, LP treatment modified biofilm production, morphology, swimming motility of P. aeruginosa, and protected C. elegans from P. aeruginosa infection. CONCLUSIONS: This research demonstrates that LP combination has significant synergistic activity against P. aeruginosa, and PBOP is potential to be an activity enhancer. Notably, this strategy improved the antibacterial activity spectrum of linezolid and other anti-Gram-positive agents and represents an effective choice to surmount the antibiotic resistance of bacteria in the long term.


Subject(s)
Caenorhabditis elegans , Pseudomonas aeruginosa , Animals , Anti-Bacterial Agents/pharmacology , Drug Synergism , Humans , Linezolid/pharmacology , Microbial Sensitivity Tests , Polymyxin B/analogs & derivatives , Polymyxin B/pharmacology
6.
Front Pharmacol ; 13: 887941, 2022.
Article in English | MEDLINE | ID: mdl-35559242

ABSTRACT

The emergence of antibiotic resistant Gram-negative bacteria such as Klebsiella pneumoniae (KP) is becoming a major public health threat and imposing a financial burden worldwide. A serious lack of new drugs under development is undermining efforts to fight them. In this study, we report a potent combination of linezolid and polymyxin B nonapeptide PBNP (LP) against KP infection in vitro and in vivo. The checkerboard test and the time-kill assay were performed to detect the antibacterial activity of LP against KP in vitro. And the Caenorhabditis elegans (C. elegans) was used as infection model to evaluate the protective effect of LP against KP infection in vivo. The LP combination showed significantly synergistic activity and antibacterial effects against KP, while linezolid and PBNP as monotherapies revealed no dramatically antibacterial activity against the KP strains. Additionally, we found that the LP treatment altered the biofilm production and morphology of KP. Furthermore, the LP treatments significantly protected C. elegans from KP infection. In conclusion, this study indicated that the LP combination exhibited significantly synergistic activity against KP and PBNP can be used as a potential activity enhancer. More importantly, this strategy provided the improvement of antibacterial activity spectrum of agents like linezolid and represented a potent alternative to overcome antibiotic resistance in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...