Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Bioact Mater ; 8: 253-266, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34541400

ABSTRACT

Implantation is an essential issue in orthopedic surgery. Bulk metallic glasses (BMGs), as a kind of novel materials, attract lots of attentions in biological field owing to their comprehensive excellent properties. Here, we show that a Zr61Ti2Cu25Al12 (at. %) BMG (Zr-based BMG) displays the best cytocompatibility, pronounced positive effects on cellular migration, and tube formation from in-vitro tests as compared to those of commercial-pure titanium and poly-ether-ether-ketone. The in-vivo micro-CT and histological evaluation demonstrate the Zr-based BMG can significantly promote a bone formation. Immunofluorescence tests and digital reconstructed radiographs manifest a stimulated effect on early blood vessel formation from the Zr-based BMG. Accordingly, the intimate connection and coupling effect between angiogenesis and osteogenesis must be effective during bone regeneration after implanting Zr-based BMG. Dynamic gait analysis in rats after implanting Zr-based BMG demonstrates a tendency to decrease the pain level during recovery, simultaneously, without abnormal ionic accumulation and inflammatory reactions. Considering suitable mechanical properties, we provide a realistic candidate of the Zr61Ti2Cu25Al12 BMG for biomedical applications.

2.
Sci Rep ; 8(1): 5659, 2018 Apr 04.
Article in English | MEDLINE | ID: mdl-29618755

ABSTRACT

Catastrophic brittle fracture of monolithic metallic glass (MG) hinders engineering application of MGs. Although many techniques has been tried to enhance tensile ductility of metallic glasses, the enhancement is quite limited. Here, we show the effect of electrodeposited Cu coating on tensile plasticity enhancement of Pd40Cu30Ni10P20 MG wires, with different volume fractions of copper coatings (R), from 0% to 97%. With increasing R, tensile elongation is enhanced to 7.1%. The plasticity enhancement is due to confinement of the Cu coatings, which lead to multiple and secondary shear bands, according to SEM investigations. In addition, the SEM images also show that the patterns on the fracture surface of the Cu-coated MG wires vary with volume fraction of the Cu coatings. The size of shear offset decreases with increasing R. The viscous fingerings on the fracture surface of monolithic MG wire changes into dimples on the fracture surface of Cu coated MG wires with R of 90% and 97%. The electrodeposition technique used in this work provides a useful way to enhance plasticity of monolithic MGs under tensile loading at room temperature.

3.
Sci Rep ; 8(1): 3242, 2018 02 19.
Article in English | MEDLINE | ID: mdl-29459751

ABSTRACT

Significant grain refinement in cast metals can be achieved through the application of electric currents during the solidification process. The present paper investigates the distribution of electric currents on the grain size of solidified Al-7wt.%Si alloy under the application of electric current with constant parameters flowing through two parallel electrodes into the melt within a cylindrical mould. The distribution of electric current was controlled by applying an electrical insulation material coating, boron nitride (NB), to the sidewall of the electrodes. Experimental results showed that the employment of these insulated electrodes can reduce grain size in comparison with the reference case of electrodes without BN coating. Flow measurements were performed in Ga-20wt.%In-12wt.%Sn liquid metal. Higher intensity forced flow occurred when the sidewall of the electrodes was insulated. In order to understand the underlying mechanism behind the stronger forced flow, corresponding numerical simulations were performed to reveal the distributions of the electric current, magnetic field, Lorentz force, and the resultant forced flow. The results achieved indicate that the mechanism of grain refinement driven by electric current is dendrite fragmentation induced by forced flow. In addition, a novel approach to enhance the grain refinement without additional input of current energy was developed.

4.
Sci Rep ; 6: 30876, 2016 08 03.
Article in English | MEDLINE | ID: mdl-27484873

ABSTRACT

The structural evolution of a Zr64.13Cu15.75Ni10.12Al10 metallic glass is investigated in-situ by high-energy synchrotron X-ray radiation upon heating up to crystallization. The structural rearrangements on the atomic scale during the heating process are analysed as a function of temperature, focusing on shift of the peaks of the structure factor in reciprocal space and the pair distribution function and radial distribution function in real space which are correlated with atomic rearrangements and progressing nanocrystallization. Thermal expansion and contraction of the coordination shells is measured and correlated with the bulk coefficient of thermal expansion. The characteristics of the microstructure and the yield strength of the metallic glass at high temperature are discussed aiming to elucidate the correlation between the atomic arrangement and the mechanical properties.

5.
Sci Rep ; 4: 3897, 2014 Jan 28.
Article in English | MEDLINE | ID: mdl-24469299

ABSTRACT

A model Zr41.25Ti13.75Ni10Cu12.5Be22.5 (at.%) bulk metallic glass (BMG) is selected to explore the structural evolution on the atomic scale with decreasing temperature down to cryogenic level using high energy X-ray synchrotron radiation. We discover a close correlation between the atomic structure evolution and the strength of the BMG and find out that the activation energy increment of the concordantly atomic shifting at lower temperature is the main factor influencing the strength. Our results might provide a fundamental understanding of the atomic-scale structure evolution and may bridge the gap between the atomic-scale physics and the macro-scale fracture strength for BMGs.

6.
Urology ; 80(2): e21-2, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22673545

ABSTRACT

Nephrogenic adenoma (NA) is a rare benign metaplastic lesion of the urothelial tract that arises as a response to injury and chronic inflammation. Although the most common site for NA is the bladder, it can occur in any part of urinary tract lined by urothelium. NA can mimic minor variants of urothelial cancer, clear cell adenocarcinoma, and prostate adenocarcinoma, making a combination of histologic examination and immunohistochemistry essential for diagnosis. We hereby report a rare case of nephrogenic adenoma arising in a urethral diverticulum.


Subject(s)
Adenoma/etiology , Diverticulum/complications , Urethral Diseases/etiology , Urethral Neoplasms/etiology , Female , Humans , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...