Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Ethnopharmacol ; 334: 118539, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986754

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Anemarrhena asphodeloides Bunge (Ane) and Phellodendron chinense C. K. Schneid (Phe) is classical herb pair in traditional Chinese medicine, commonly used to ameliorate the symptoms of Benign Prostatic Hyperplasia (BPH). However, the mechanisms underlying this effect are remained indistinct. AIM OF THE STUDY: This study aimed to clarify potential therapeutic mechanisms of herb pair on BPH from a metabolic perspective. MATERIALS AND METHODS: Testosterone propionate-induced BPH rat model was established, prostatic parameters, histopathology and the levels of serum dihydrotestosterone (DHT) and testosterone (T) were used to evaluate the pharmacological effect of the herb pair on BPH. Subsequently, untargeted metabolomics of prostate tissues samples was performed by UHPLC-Q-Exactive-Orbitrap-MS, followed by multivariate statistical analysis. Targeted metabolomics by UHPLC-QQQ-MS was further utilized to verify and supplement the results of lipids and amino acids found by untargeted metabolomics, clarifying the relationship between disease, herbal pair and metabolism pathway. RESULTS: The study found that Ane-Phe could relieve the progression of BPH and regulate metabolic imbalances. The levels of 13 metabolites decreased and 11 increased in prostatic tissues including glycerolphospholipid, arachidonic acid, citric acid and so on, these altered metabolites were primarily associated with TCA cycle, arachidonic acid metabolism, lipid metabolism and amino acid metabolism. Furthermore, targeted metabolomics was fulfilled to further analyze the lipid metabolism disorders, the levels of 5 lipids in serum and 21 in prostatic tissues were changed in the herb pair group compared to the model group, which closely related to glycerophospholipid, sphingolipid and glycerolipid metabolism. Besides, amino acid metabolism may be regulated by activating arginine metabolism pathway. CONCLUSIONS: In this study, the combination of untargeted metabolomics and targeted metabolomics was applied to explore therapeutic mechanisms of Ane-Phe on BPH. In summary, Ane-Phe could improve the levels of endogenous metabolites by regulating multiple metabolic pathways and plays a role in energy supply, anti-inflammation and oxidative stress in BPH treatment.

2.
J Pharm Biomed Anal ; 248: 116264, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38889577

ABSTRACT

Anemarrhena asphodeloides Bunge-Phellodendron chinense Schneid (AAPC) is one of the most widely accepted herb pairs in Chinese medicine prescription for treating benign prostatic hyperplasia (BPH). However, the mechanisms underlying the combination of the two herbs for anti-BPH are still not completely clear. To uncover the potential mechanism of the AAPC herb pair in the treatment of BPH, chemical profiling, network pharmacology, serum metabonomics and experimental validation were integrated. UHPLC-Q-Exactive Orbitrap-MS was performed to characterize the chemical profiling of the herb pair extract, and network pharmacology was employed to forecast the potential effective components, core targets and key signaling pathways. Then, western blot and RT-PCR experiments were conducted to verify the PI3K/Akt/NF-κB signaling pathway predicted by network pharmacology. Finally, the serum differential metabolites and metabolic pathways were analyzed by serum non-targeted metabonomics, and these results were jointly analyzed by MetScape. 51 chemical components of the AAPC herb pair extract were identified, including phellodendrine, magnoflorine, berberine, mangiferin, anemarsaponin BIII, etc. In network pharmacology, the predicted core targets of these components include AKT1, TNF, EGFR, PTGS2, PIK3CA, etc. The KEGG pathway enrichment analysis indicated that PI3K-Akt, Rap1 and MAPK signaling pathways may play a key role in the AAPC herb pair for the treatment of BPH, and the results of animal experiments demonstrated that the herb pair could significantly inhibit the activation and expression of p-PI3K/PI3K, p-Akt/Akt, p-NF-κB/NF-κB in protein and mRNA levels. Furthermore, 31 serum differential metabolites and three main metabolic pathways were obtained by serum non-targeted metabonomics. And the crucial metabolic pathway of arachidonic acid (AA) was obtained by integrated analysis of network pharmacology and metabonomics results. In conclusion, the AAPC herb pair can improve BPH through inhibiting the activation and expression of the PI3K/Akt/NF-κB signaling pathway and AA metabolism.


Subject(s)
Anemarrhena , Drugs, Chinese Herbal , Metabolomics , Network Pharmacology , Phellodendron , Prostatic Hyperplasia , Signal Transduction , Prostatic Hyperplasia/drug therapy , Prostatic Hyperplasia/blood , Male , Anemarrhena/chemistry , Metabolomics/methods , Network Pharmacology/methods , Phellodendron/chemistry , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Signal Transduction/drug effects , Chromatography, High Pressure Liquid/methods , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Sprague-Dawley , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Plant Extracts/pharmacology
3.
J Pharm Biomed Anal ; 234: 115480, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37454501

ABSTRACT

Zishen Pill (ZSP) is a traditional Chinese medicine that is frequently used to treat Benign Prostatic Hyperplasia (BPH), however its specific mechanism of action and active ingredients are yet unknown. We used a combination of serum pharmacochemistry and network pharmacology and a series of biochemical assays to explore the action mechanism of ZSP in the treatment of BPH. The BPH rat model was created using testosterone propionate, and following oral ZSP administration, the components of ZSP in rat serum were detected by UPLC-Q-Exactive Orbitrap/MS method. A "component-target-disease" network and PPI networks were constructed on this foundation. The primary mechanism of ZSP decreasing BPH in rats was studied by KEGG pathway and GO analysis. Finally, the potential pathways and key targets were further verified in vivo by molecular biology and immunological methods. 46 substances were charactered from rat serum, and 164 anti-BPH targets were screened from the database. According to network pharmacology, the primary targets were CASP3, STAT3, JUN, and PTGS2/COX2. Three related pathways (PI3K/Akt signaling pathway, AGE-RAGE signaling pathway and EGFR tyrosine kinase inhibitor resistance) were closely related to the therapeutic effects of ZSP. The findings of molecular biology demonstrated that ZSP may bring Bcl-2, BAX, CASP3, COX2, and 5LOX protein and gene expression in BPH rats appreciably closer to that of normal rats. Additionally, ZSP can lessen the expression of inflammatory cytokines in BPH rats, including VEGF, TNF-α, CCL5, and interleukin. CONCLUSION: The above results suggest that ZSP may reduce BPH through inflammation/immunity and apoptosis/proliferation-related pathways. This study offers a fresh approach to investigate the basic pharmacological effects and mechanism of ZSP in the treatment of BPH.


Subject(s)
Drugs, Chinese Herbal , Prostatic Hyperplasia , Animals , Rats , Male , Humans , Prostatic Hyperplasia/drug therapy , Network Pharmacology , Caspase 3 , Cyclooxygenase 2 , Phosphatidylinositol 3-Kinases , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Molecular Docking Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...