Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Opt Express ; 30(22): 40704-40711, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36299000

ABSTRACT

In this article, we report a high power quantum cascade laser (QCL) at λ∼7.4 µm with a broad tuning range. By carefully designing and optimizing the active region and waveguide structure, a continuous-wave (CW) output power up to 1.36 W and 0.5 W is achieved at 293 K and 373 K which shows the excellent temperature stability. A high wall-plug efficiency (WPE) of 8% and 13.6% in CW and pulsed mode at 293 K are demonstrated. The laser shows a characteristic temperature T0 of 224 K and T1 of 381 K over a temperature range from 283 K to 373 K. In addition, a far field of pure zero order transverse mode and a fairly wide external cavity (EC) tuning range (280 cm-1) from 6.54 µm to 8 µm are achieved in pulsed operation. In addition, an EC single mode output power of 226 mW is obtained under CW operation at 293K.

2.
Opt Express ; 30(16): 29007-29014, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-36299085

ABSTRACT

A second-order distributed feedback interband cascade laser emitting at 3.25 µm was designed, grown, and fabricated. By coherent epitaxy of a GaSb cap layer instead of the conventional thin InAs cap on top of the laser structure, a high-quality surface grating was made of GaSb and gold. Enough coupling strength and a significant inter-modal loss difference were predicted according to the simulation within the framework of couple-wave theory. Lasers having 2-mm-long cavities and 4.5-µm-wide ridges with high-/anti-reflection coatings were fabricated. The continuous-wave threshold current and maximum single-mode output power were 60 mA and 24 mW at 20°C, respectively. The output power of 5 mW was still kept at 55°C. Continuous tuning free from mode hopping and high single-mode suppression ratios (>20 dB) were realized at all injection currents and heat-sink temperatures, covering a spectral range of over 20 cm-1.

3.
Nanoscale Res Lett ; 14(1): 331, 2019 Oct 22.
Article in English | MEDLINE | ID: mdl-31641875

ABSTRACT

In this paper, an anomalous spectral data of distributed Bragg reflector (DBR) quantum cascade lasers (QCLs) emitting around 7.6 µm is presented. The two-section DBR lasers, consisting of a gain section and an unpumped Bragg reflector, display an output power above 0.6 W in continuous wave (CW) mode at room temperature. The anomalous spectral data is defined as a longitudinal mode which moves toward shorter wavelengths with increasing temperature or injection current, which is unexpected. Although the longer wavelength modes are expected to start lasing when raising device temperature or injection current, occasional mode hops to a shorter wavelength are seen. These anomalous mode transitions are explained by means of modal analysis. The thermal-induced change of the refractive index implied by an increase in the temperature or injection current yields nearly periodic transitions between cavity modes.

4.
Nanoscale Res Lett ; 14(1): 123, 2019 Apr 03.
Article in English | MEDLINE | ID: mdl-30945027

ABSTRACT

High-power, low-threshold stable single-mode operation buried distributed feedback quantum cascade laser by incorporating sampled grating emitting at λ ~ 4.87 µm is demonstrated. The high continuous wave (CW) output power of 948 mW and 649 mW for a 6-mm and 4-mm cavity length is obtained at 20 °C, respectively, which benefits from the optimized optical field distribution of sampled grating. The single-mode yields of the devices are obviously enhanced by controlling cleaved positions of the two end facets precisely. As a result, stable single-mode emission and mode tuning linearly without any mode hopping of devices are obtained under the different heat sink temperatures or high injection currents.

5.
ACS Synth Biol ; 8(2): 425-433, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30668109

ABSTRACT

Keratinases are becoming biotechnologically important since they have shown potential in hydrolysis of recalcitrant keratins with highly rigid and strongly cross-linked structures. However, the large-scale application of keratinases has been limited by the inefficient expression level and low enzyme activity. In this work, we employed pro-peptide engineering and saturation mutagenesis to construct excellent keratinase variants with improved activities. It turned out that amino acid substitutions at the pro-peptide cleavage site (P1) could accelerate the release of active mature enzymes, resulting in a 3-fold activity increase. Eighteen sites of the pro-peptide area were targeted for codon mutagenesis, and a multisite saturation mutagenesis library of the six potential sites was generated, achieving a significant improvement of keratinase activity from 179 to 1114 units/mL. Also, the mutants exhibited alterant catalytic properties. Finally, fermentation for keratinase production in a 15 L fermenter was carried out, and the enzyme activity reached up to over 3000 units/mL. Our results demonstrated that pro-peptide engineering played a crucial role in high expression and engineering of proteases. This study provides a universal route toward improvement of industrial enzymes that were first synthesized as precursors in the form of pre-pro-protein.


Subject(s)
Biotechnology/methods , Peptide Hydrolases/metabolism , Amino Acid Substitution , Bacillus/enzymology , Catalysis , Hydrogen-Ion Concentration , Mutagenesis , Peptide Hydrolases/genetics , Substrate Specificity
6.
Appl Opt ; 57(26): 7579-7583, 2018 Sep 10.
Article in English | MEDLINE | ID: mdl-30461827

ABSTRACT

A quantum cascade laser emitting at λ∼8.5 µm based on the excited-state injection is presented. The operating voltage is reduced for a low-voltage defect in the excited-state design, compared with the conventional ground-state injection design. The threshold voltage and voltage defect are as low as 6.3 V and 54 mV for a 30-stage active region, respectively. Devices were fabricated through standard buried-heterostructure processing to decrease the heat accumulation. A continuous-wave optical power of 340 mW is obtained at 283 K with a threshold current density of 2.7 kA/cm2. Such a design has the potential to further improve the wall plug efficiency for increased voltage efficiency.

7.
Nanoscale Res Lett ; 13(1): 205, 2018 Jul 09.
Article in English | MEDLINE | ID: mdl-29987613

ABSTRACT

Power scaling in broad area quantum cascade laser (QCL) usually leads to the deterioration of the beam quality with an emission of multiple lobes far-field pattern. In this letter, we demonstrate a tapered QCL array integrated with Talbot cavity at one side of the array. Fundamental supermode operation is achieved in the arrays with taper straight-end connected to the Talbot cavity. Lateral far-field of the fundamental supermode shows a near diffraction limited beam divergence of 2.7°. The output power of a five-element array is about three times as high as a single-ridge laser with an emission wavelength of around 4.8 µm. However, arrays with the taper-end connected to the Talbot cavity always show a high-order supermode operation whatever Talbot cavity length is.

8.
Nanoscale Res Lett ; 13(1): 37, 2018 Feb 02.
Article in English | MEDLINE | ID: mdl-29396762

ABSTRACT

In this work, quantum cascade lasers (QCLs) based on strain compensation combined with two-phonon resonance design are presented. Distributed feedback (DFB) laser emitting at ~ 4.76 µm was fabricated through a standard buried first-order grating and buried heterostructure (BH) processing. Stable single-mode emission is achieved under all injection currents and temperature conditions without any mode hop by the optimized antireflection (AR) coating on the front facet. The AR coating consists of a double layer dielectric of Al2O3 and Ge. For a 2-mm laser cavity, the maximum output power of the AR-coated DFB-QCL was more than 170 mW at 20 °C with a high wall-plug efficiency (WPE) of 4.7% in a continuous-wave (CW) mode.

9.
Nanoscale Res Lett ; 12(1): 517, 2017 Sep 02.
Article in English | MEDLINE | ID: mdl-28866815

ABSTRACT

In the present work, an ultra-low power consumption substrate-emitting distributed feedback (DFB) quantum cascade laser (QCL) was developed. The continuous-wave (CW) threshold power dissipation is reduced to 0.43 W at 25 °C by shortening the cavity length to 0.5 mm and depositing high-reflectivity (HR) coating on both facets. As far as we know, this is the recorded threshold power dissipation of QCLs in the same conditions. Single-mode emission was achieved by employing a buried second-order grating. Mode-hop free emission can be observed within a wide temperature range from 15 to 105 °C in CW mode. The divergence angles are 22.5o and 1.94o in the ridge-width direction and cavity-length direction, respectively. The maximum optical power in CW operation was 2.4 mW at 25 °C, which is sufficient to spectroscopy applications.

10.
Opt Express ; 25(12): 13807-13815, 2017 Jun 12.
Article in English | MEDLINE | ID: mdl-28788922

ABSTRACT

We demonstrate a quantum cascade laser with active regions consisting of InAs quantum dots deposited on GaAs buffer layers that are embedded in InGaAs wells confined by InAlAs barriers. Continuous wave room temperature lasing at the wavelength of 7.2 µm has been demonstrated with the threshold current density as low as 1.89 kA/cm2, while in pulsed operational mode lasing at temperatures as high as 110 °C had been observed. A phenomenological theory explaining the improved performance due to weak localization of states had been formulated.

11.
Nanoscale Res Lett ; 12(1): 281, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28423867

ABSTRACT

Very low power-consumption distributed feedback (DFB) quantum cascade lasers (QCLs) at the wavelength around 4.9 µm were fabricated by conventional process without lateral regrowth of InP:Fe or using sidewall grating. Benefitted from the optimized materials and low waveguide loss, very low threshold current density of 0.5 kA/cm2 was obtained for a device with cavity length of 2 mm. Combined with the partial-high-reflection coating, the 1-mm-long DFB QCL achieved low power-consumption continuous wave (CW) operation up to 105 °C. The CW threshold power-consumptions were 0.72 and 0.78 W at 15 and 25 °C, respectively. The maximum CW output power was over 110 mW at 15 °C and still more than 35 mW at 105 °C. At 15 °C, wall-plug efficiency of 5.5% and slope efficiency of 1.8 W/A were deduced, which were very high for low power-consumption DFB QCLs.

12.
Nanoscale Res Lett ; 11(1): 536, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27910073

ABSTRACT

The design, fabrication, and characterization of a polarization-dependent normal incident quantum cascade detector coupled via complementary split-ring metamaterial resonators in the infrared regime are presented. The metamaterial structure is designed through three-dimensional finite-difference time-domain method and fabricated on the top metal contact, which forms a double-metal waveguide together with the metallic ground plane. With normal incidence, significant enhancements of photocurrent response are obtained at the metamaterial resonances compared with the 45° polished edge coupling device. The photocurrent response enhancements exhibit clearly polarization dependence, and the largest response enhancement factor of 165% is gained for the incident light polarized parallel to the split-ring gap.

13.
Nanoscale Res Lett ; 11(1): 392, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27613069

ABSTRACT

We demonstrate a quantum dash quantum cascade photodetector (QDash-QCD) by incorporating self-assembled InAs quantum dashes into the active region of a long wave infrared QCD. Sensitive photoresponse to normal incident light at 10 µm was observed, which is attributed to the intersubband (ISB) transitions in the quantum well/quantum dash (QW/QDash) hybrid absorption region and the following transfer of excited electrons on the extraction stair-like quantum levels separated by LO-phonon energy. The high density InAs quantum dashes were formed in the Stranski-Krastanow mode and stair-like levels were formed by a lattice matched InGaAs/InAlAs superlattice. A stable responsivity from 5 mA/W at 77 K to 3 mA/W at as high as 190 K was observed, which makes the QDash-QCD promising in high temperature operation.

14.
Opt Express ; 24(17): 19545-51, 2016 Aug 22.
Article in English | MEDLINE | ID: mdl-27557231

ABSTRACT

We demonstrate a surface-emitting quantum cascade laser (QCL) based on second-order buried distributed feedback/distributed Bragg reflector (DFB/DBR) gratings for feedback and outcoupling. The grating fabricated beneath the waveguide was found to fundamentally favor lasing in symmetric mode either through analysis or experiment. Single-lobe far-field radiation pattern with full width at half maximum (FWHM) of 0.18° was obtained along the cavity-length direction. Besides, the buried DFB/DBR grating structure successfully provided an efficient vertical outcoupling mechanism with low optical losses, which manages to achieve a high surface outcouping efficiency of 46% in continuous-wave (CW) operation and 60% in pulsed operation at room temperature. Single-mode emission with a side-mode suppression ratio (SMSR) about 25 dB was continuously tunable by heat sink temperature or injection current. Our work contributes to the realization of high efficiency surface-emitting devices with high far-field beam quality that are significantly needed in many application fields.

15.
Emerg Infect Dis ; 22(2): 274-6, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26812444

ABSTRACT

Analysis of hemorrhagic fever with renal syndrome cases in Zibo City, China, during 2006-2014 showed that it occurred year-round. Peaks in spring and fall/winter were caused by Hantaan and Seoul viruses, respectively. Rodent hosts were the striped field mouse for Hantaan virus and the brown rat and house mouse for Seoul virus.


Subject(s)
Hemorrhagic Fever with Renal Syndrome/epidemiology , Adult , China/epidemiology , Geography, Medical , Hantaan virus , Hemorrhagic Fever with Renal Syndrome/history , History, 21st Century , Humans , Incidence , Middle Aged , Mortality , Seasons
16.
Brain Res ; 1624: 78-85, 2015 Oct 22.
Article in English | MEDLINE | ID: mdl-26210618

ABSTRACT

3-O-demethylswertipunicoside (3-ODS) has been reported to protect dopaminergic neurons against neurotoxicity induced by 1-methyl-4-phenylpyridinium (MPP(+)) in PC12 cells. Here, we investigate the neuroprotective effects in vivo and antioxidant activities in vitro of 3-ODS. In the 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP)-treated mouse model of Parkinson's disease (PD), 3-ODS dose-dependently improved motor coordination (as shown by rotarod test), increased the contents of dopamine (DA) and its metabolites in the striatum, and increased the number of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra (SN). In addition, 3-ODS also increased the spine density in hippocampal CA1 neurons. In antioxidant assays, 3-ODS showed a strong capacity in scavenging hydroxyl radical, superoxide anion and 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical in a concentration-dependent manner. Taken together, we conclude that 3-ODS attenuates the PD-related motor deficits mainly through its neuroprotective effects, growth-promoting effects on spine density, and its antioxidant activities.


Subject(s)
Glucosides/therapeutic use , MPTP Poisoning/drug therapy , Neuroprotective Agents/therapeutic use , Xanthones/therapeutic use , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , 3,4-Dihydroxyphenylacetic Acid/metabolism , Animals , Biphenyl Compounds/metabolism , Disease Models, Animal , Dopamine/metabolism , Dose-Response Relationship, Drug , Glucosides/chemistry , Hippocampus/drug effects , Hydroxyl Radical/metabolism , In Vitro Techniques , MPTP Poisoning/physiopathology , Male , Mice , Mice, Inbred C57BL , Motor Activity/drug effects , Picrates/metabolism , Spine/drug effects , Spine/pathology , Superoxides/metabolism , Tyrosine 3-Monooxygenase/metabolism , Xanthones/chemistry
17.
Nanoscale Res Lett ; 10: 177, 2015.
Article in English | MEDLINE | ID: mdl-25977652

ABSTRACT

High-power broad area substrate emitting photonic-crystal distributed feedback (DFB) quantum cascade lasers (QCLs) emitting around 4.73 µm is reported. Two-dimensional centered rectangular photonic-crystal (CRPC) grating is introduced to enhance optical coherence in large area device. Main lobe far-field radiation pattern with a very small divergence angle of about 0.65° × 0.31° is obtained. A record peak output power for vertical emitting QCLs exceeding 10 W is obtained with high reflectivity (HR) coating. Robust single longitudinal mode emission with a side mode suppression ratio (SMSR) of 30 dB is continuously tunable by the heat sink temperature up to 65°C.

18.
Nanoscale Res Lett ; 9(1): 144, 2014 Mar 25.
Article in English | MEDLINE | ID: mdl-24666965

ABSTRACT

We demonstrated an unambiguous quantum dot cascade laser based on InGaAs/GaAs/InAs/InAlAs heterostructure by making use of self-assembled quantum dots in the Stranski-Krastanow growth mode and two-step strain compensation active region design. The prototype generates stimulated emission at λ ~ 6.15 µm and a broad electroluminescence band with full width at half maximum over 3 µm. The characteristic temperature for the threshold current density within the temperature range of 82 to 162 K is up to 400 K. Moreover, our materials show the strong perpendicular mid-infrared response at about 1,900 cm-1. These results are very promising for extending the present laser concept to terahertz quantum cascade laser, which would lead to room temperature operation. PACS: 42.55.Px; 78.55.Cr; 78.67.Hc.

19.
Water Sci Technol ; 67(2): 306-10, 2013.
Article in English | MEDLINE | ID: mdl-23168628

ABSTRACT

Dialdehyde 8-aminoquinoline starch (DASQA) was synthesized by the reaction of dialdehyde starch (DAS) and 8-aminoquinoline and was used to adsorb various ions from aqueous solution. DASQA was characterized by Fourier transform infrared (FT-IR) spectra, thermogravimetric analysis, X-ray diffraction analysis. The adsorption properties of the polymer for Pb(2+), Cu(2+), Cd(2+), Ni(2+), and Zn(2+) were investigated. The result of the experiment reveals that the adsorption for Cd(2+) and Zn(2+)were approximately 2.51 mmol/g, 2.17 mmol/g, followed by Pb(2+) 1.93 mmol/g, Ni(2+) 1.66 mmol/g, Cu(2+) 1.19 mmol/g. Furthermore, the kinetic experiments indicated that the adsorption of DASQA for the above metal ions achieved equilibrium within 2 h. Therefore, DASQA is an effective adsorbent for the removal of different heavy metal ions from industrial waste solutions.


Subject(s)
Aminoquinolines/chemistry , Aminoquinolines/chemical synthesis , Starch/chemical synthesis , Adsorption , Hydrogen-Ion Concentration , Ions , Kinetics , Spectroscopy, Fourier Transform Infrared , Starch/chemistry , Temperature , Thermogravimetry , Time Factors , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...