Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 63(11): e202400323, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38247990

ABSTRACT

Metal-organic frameworks (MOFs) have emerged as promising oxygen evolution reaction (OER) electrocatalysts. Chemically bonded MOFs on supports are desirable yet lacking in routine synthesis, as they may allow variable structural evolution and the underlying structure-activity relationship to be disclosed. Herein, direct MOF synthesis is achieved by an organic acid-etching strategy (AES). Using π-conjugated ferrocene (Fc) dicarboxylic acid as the etching agent and organic ligand, a series of MFc-MOF (M=Ni, Co, Fe, Zn) nanosheets are synthesized on the metal supports. The crystal structure is studied using X-ray diffraction and low-dose transmission electron microscopy, which is quasi-lattice-matched with that of the metal, enabling in situ MOF growth. Operando Raman and attenuated total reflectance Fourier transform infrared spectroscopy disclose that the NiFc-MOF features dynamic structural rebuilding during OER. The reconstructed one showing optimized electronic structures with an upshifted total d-band center, high M-O bonding state occupancy, and localized electrons on adsorbates indicated by density functional theory calculations, exhibits outstanding OER performance with a fairly low overpotential (130 mV at 10 mA cm-2 ) and good stability (144 h). The newly established approach for direct MOF synthesis and structural reconstruction disclosure stimulate the development of more prudent catalysts for advancing OER.

2.
Small ; 20(5): e2306572, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37759384

ABSTRACT

Cation-intercalated vanadates, which have considerable promise as the cathode for high-performance potassium metal batteries (PMBs), suffer from structural collapse upon K+ insertion and desertion. Exotic cations in the vanadate cathode may ease the collapse, yet their effect on the intrinsic cation remains speculative. Herein, a stable and dendrite-free PMB, composed of a Na+ and K+ co-intercalated vanadate (NKVO) cathode and a liquid NaK alloy anode, is presented. A series of NKVO with tuneable Na/K ratios are facilely prepared using MXene precursors, in which Na+ is testified to be immobilized upon cycling, functioning as a structural pillar. Due to stronger ionic bonding and lower Fermi level of Na+ compared to K+ , moderate Na+ intercalation could reduce K+ binding to the solvation sheath and favor K+ diffusion kinetics. As a result, the MXene-derived Na+ -pillared NKVO exhibits markedly improved specific capacities, rate performance, and cycle stability than the Na+ -free counterpart. Moreover, thermally-treated carbon paper, which imitates the microscopic structure of Chinese Xuan paper, allows high surface tension liquid NaK alloy to adhere readily, enabling dendrite-free metal anodes. By clarifying the role of foreign intercalating cations, this study may lead to a more rational design of stable and high-performance electrode materials.

3.
Nanoscale Horiz ; 8(7): 852-858, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-36975185

ABSTRACT

A new catalytic approach is pioneered to achieve CO2 methanation via a single atom alloy Ir/Ni catalyst using a ball-milling method. This Ir/Ni catalyst exhibits a TOFCH4 of 10244 h-1 and a 220 h lifetime at 350 °C without deactivation, illustrating excellent catalytic efficiency in the presence of mechanical energy.

4.
Small ; 19(26): e2300914, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36950747

ABSTRACT

Previously, heat treatment was the only feasible route for tuning the crystal phases of niobium pentoxide (Nb2 O5 ). With the use of Nb2 CTx MXene precursors, the first case of phase tuning of Nb2 O5 in the low-temperature hydrothermal synthesis using sulfuric acid regulating agents is presented. By varying the amount of the agent, four pure-phase Nb2 O5 crystals and mixed phases in-between are obtained. The required amount is found to be related to the H-covered surface energy calculated based on density functional theory. Overall, MXene-derived B-phase Nb2 O5 is of particular interest due to its exceptionally high capacities as lithium-ion battery anodes, which are three times higher than the routine synthesized one. Oxygen vacancies induced by crystallographic shear would be responsible for the extraordinary performance. The proposed phase tuning strategy encourages the prudent synthesis of difficult-to-obtain crystal phases.

5.
Adv Sci (Weinh) ; 10(8): e2206687, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36642842

ABSTRACT

CO2 cycloaddition with epoxides is a key catalytic procedure for CO2 utilization. Several metal-based catalysts with cocatalysts are developed for photo-driven CO2 cycloaddition, while facing difficulties in product purification and continuous reaction. Here, poly(ionic liquid)s are proposed as metal-free catalysts for photo-driven CO2 cycloaddition without cocatalysts. A series of poly(ionic liquid)s with donor-acceptor segments are fabricated and their photo-driven catalytic performance (conversion rate of 83.5% for glycidyl phenyl ether) outstrips (≈4.9 times) their thermal-driven catalytic performance (17.2%) at the same temperature. Mechanism studies confirm that photo-induced charge separation is promoted by the donor-acceptor segments and can accelerate the CO2 cycloaddition reaction. This work paves the way for the further use of poly(ionic liquid)s as catalysts in photo-driven CO2 cycloaddition.

6.
Small ; 18(50): e2204942, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36323622

ABSTRACT

The electrochemical sensing of nitric oxide (NO) molecules by metal-organic framework (MOF) catalysts has been impeded, to a large extent, owing to their poor electrical conductivity and weak NO adsorption. In this work, incomplete in situ conversion of V2 CTx (T = terminal atoms) MXene to MOF is adopted, forming MOF@MXene heterostructures, which outperform MXene and MOF monocomponents toward electrochemical NO sensing. Density functional theory (DFT) calculation results indicate metal-like electronic characters for the heterostructure benefiting from the dominating contribution of the V 3d orbitals of the metallic MXene. Moreover, plane-averaged charge density difference shows substantial charge redistribution occurs at the heterointerfaces, producing a built-in field, which facilitates charge transfer. Besides, molecular mechanics-based simulated annealing calculation reveals greatly enhanced adsorption energies of NO molecules on the heterointerfaces than that on separate MOFs and MXenes. Hence, the facilitated charge transfer and preferential NO adsorption are responsible for the dramatically promoted performance toward NO sensing. The prudent design of MOF@MXene heterostructure may spur advanced electrocatalysts for electrochemical sensing.

7.
J Phys Chem Lett ; 13(36): 8586-8600, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36073927

ABSTRACT

"Liquid sunshine" is the conceptual green liquid fuel that is produced by a combination of solar energy, CO2, and H2O. Alcohols are commonly regarded as the preferred candidates for liquid sunshine because of their advantages of high energy density and extensive industrial applications. However, both the alcohol synthesis and H2 release processes require harsh reaction conditions, resulting in large external energy input. Unlike alcohols, the synthesis and dehydrogenation of formic acid (FA)/formate can be performed under mild conditions. Herein, we propose liquid sunshine FA/formate as a promising supplement to alcohol. First, we outline the vision of using FA/formate as liquid sunshine and discuss its feasibility. Then, we concentrate on the application of FA/formate as liquid organic hydrogen carrier and summarize the recent developments of CO2 hydrogenation to FA/formate and FA/formate dehydrogenation under mild conditions. Finally, we discuss the current applications, challenges, and opportunities surrounding the use of FA/formate as liquid sunshine.

8.
Front Chem ; 10: 957412, 2022.
Article in English | MEDLINE | ID: mdl-35928210

ABSTRACT

Single-atom catalysts (SACs) as the new frontier in heterogeneous catalysis have attracted increasing attention. However, the rational design of SACs with high catalytic activities for specified reactions still remains challenging. Herein, we report the rational design of a Pd1-PdNPs synergistic structure on 2,6-pyridinedicarbonitrile-derived covalent triazine framework (CTF) as an efficient active site for CO2 hydrogenation to formate under ambient conditions. Compared with the catalysts mainly comprising Pd1 and PdNPs, this hybrid catalyst presented significantly improved catalytic activity. By regulating the ratio of Pd1 to PdNPs, we obtained the optimal catalytic activity with a formate formation rate of 3.66 molHCOOM·molPd -1·h-1 under ambient conditions (30°C, 0.1 MPa). Moreover, as a heterogeneous catalyst, this hybrid catalyst is easily recovered and exhibits about a 20% decrease in the catalytic activity after five cycles. These findings are significant in elucidating new rational design principles for CO2 hydrogenation catalysts with superior activity and may open up the possibilities of converting CO2 under ambient conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...