Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Sci ; 114(1): 115-128, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36114822

ABSTRACT

Vascular endothelial growth factor receptor 2 (VEGFR2)/KDR plays a critical role in tumor growth, diffusion, and invasion. The amino acid sequence homology of KDR between mouse and human in the VEGF ligand-binding domain was low, thus the WT mice could not be used to evaluate Abs against human KDR, and the lack of a suitable mouse model hindered both basic research and drug developments. Using the CRISPR/Cas9 technique, we successfully inserted different fragments of the human KDR coding sequence into the chromosomal mouse Kdr exon 4 locus to obtain an hKDR humanized mouse that can be used to evaluate the marketed Ab ramucirumab. In addition, the humanized mAb VEGFR-HK19 was developed, and a series of comparative assays with ramucirumab as the benchmark revealed that VEGFR-HK19 has higher affinity and superior antiproliferation activity. Moreover, VEGFR-HK19 selectively inhibited tumor growth in the hKDR mouse model but not in WT mice. The most important binding epitopes of VEGFR2-HK19 are D257, L313, and T315, located in the VEGF binding region. Therefore, the VEGFR2-HK19 Ab inhibits tumor growth by blocking VEGF-induced angiogenesis, inflammation, and promoting apoptosis. To our best knowledge, this novel humanized KDR mouse fills the gaps both in an animal model and the suitable in vivo evaluation method for developing antiangiogenesis therapies in the future, and the newly established humanized Ab is expected to be a drug candidate possibly benefitting tumor patients.


Subject(s)
Antibodies, Neutralizing , Vascular Endothelial Growth Factor Receptor-2 , Humans , Mice , Animals , Antibodies, Neutralizing/pharmacology , Vascular Endothelial Growth Factor A/metabolism , Phosphorylation , Protein Binding , Vascular Endothelial Growth Factor Receptor-1/metabolism , Receptors, Vascular Endothelial Growth Factor
2.
Nat Commun ; 13(1): 2990, 2022 May 30.
Article in English | MEDLINE | ID: mdl-35637222

ABSTRACT

The integration of complex oxides with a wide spectrum of functionalities on Si, Ge and flexible substrates is highly demanded for functional devices in information technology. We demonstrate the remote epitaxy of BaTiO3 (BTO) on Ge using a graphene intermediate layer, which forms a prototype of highly heterogeneous epitaxial systems. The Ge surface orientation dictates the outcome of remote epitaxy. Single crystalline epitaxial BTO3-δ films were grown on graphene/Ge (011), whereas graphene/Ge (001) led to textured films. The graphene plays an important role in surface passivation. The remote epitaxial deposition of BTO3-δ follows the Volmer-Weber growth mode, with the strain being partially relaxed at the very beginning of the growth. Such BTO3-δ films can be easily exfoliated and transferred to arbitrary substrates like Si and flexible polyimide. The transferred BTO3-δ films possess enhanced flexoelectric properties with a gauge factor of as high as 1127. These results not only expand the understanding of heteroepitaxy, but also open a pathway for the applications of devices based on complex oxides.

3.
ACS Appl Mater Interfaces ; 12(9): 10648-10656, 2020 Mar 04.
Article in English | MEDLINE | ID: mdl-32043352

ABSTRACT

The potential in a synaptic simulation for neuromorphic computation has revived the research interest of resistive random access memory (RRAM). However, novel applications require reliable multilevel resistive switching (RS), which still represents a challenge. We demonstrate in this work the achievement of reliable HfO2-based RRAM devices for synaptic simulation by performing the Al doping and the postdeposition annealing (PDA). Transmission electron microscopy and operando hard X-ray photoelectron spectroscopy results reveal the positive impact of Al doping on the formation of oxygen vacancies. Detailed I-V characterizations demonstrate that the 16.5% Al doping concentration leads to better RS properties of the device. In comparison with the other reported results based on HfO2 RRAM, our devices with 16.5% Al-doping and PDA at 450 °C show better reliable multilevel RS (∼20 levels) performance and an increased on/off ratio. The 16.5% Al:HfO2 sample with PDA at 450 °C shows good potentiation/depression characteristics with low pulse width (10 µs) along with a good On/Off ratio (>1000), good data retention at room temperature, and high temperature and good program/erase endurance characteristics with a pulse width of 50 ns. The synapse features including potentiation, depression, and spike time-dependent plasticity were successfully achieved using optimized Al-HfO2 RRAM devices. Our results demonstrate the beneficial effects of Al doping and PDA on the enhancement of the performances of RRAM devices for the synaptic simulation in neuromorphic computing applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...