Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-38990514

ABSTRACT

Protein-peptide interactions (PPepIs) are vital to understanding cellular functions, which can facilitate the design of novel drugs. As an essential component in forming a PPepI, protein-peptide binding sites are the basis for understanding the mechanisms involved in PPepIs. Therefore, accurately identifying protein-peptide binding sites becomes a critical task. The traditional experimental methods for researching these binding sites are labor-intensive and time-consuming, and some computational tools have been invented to supplement it. However, these computational tools have limitations in generality or accuracy due to the need for ligand information, complex feature construction, or their reliance on modeling based on amino acid residues. To deal with the drawbacks of these computational algorithms, we describe a geometric attention-based network for peptide binding site identification (GAPS) in this work. The proposed model utilizes geometric feature engineering to construct atom representations and incorporates multiple attention mechanisms to update relevant biological features. In addition, the transfer learning strategy is implemented for leveraging the protein-protein binding sites information to enhance the protein-peptide binding sites recognition capability, taking into account the common structure and biological bias between proteins and peptides. Consequently, GAPS demonstrates the state-of-the-art performance and excellent robustness in this task. Moreover, our model exhibits exceptional performance across several extended experiments including predicting the apo protein-peptide, protein-cyclic peptide and the AlphaFold-predicted protein-peptide binding sites. These results confirm that the GAPS model is a powerful, versatile, stable method suitable for diverse binding site predictions.


Subject(s)
Peptides , Binding Sites , Peptides/chemistry , Peptides/metabolism , Protein Binding , Computational Biology/methods , Algorithms , Proteins/chemistry , Proteins/metabolism , Machine Learning
2.
Eur J Med Chem ; 275: 116628, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38944933

ABSTRACT

Macrocyclic peptides possess unique features, making them highly promising as a drug modality. However, evaluating their bioactivity through wet lab experiments is generally resource-intensive and time-consuming. Despite advancements in artificial intelligence (AI) for bioactivity prediction, challenges remain due to limited data availability and the interpretability issues in deep learning models, often leading to less-than-ideal predictions. To address these challenges, we developed PepExplainer, an explainable graph neural network based on substructure mask explanation (SME). This model excels at deciphering amino acid substructures, translating macrocyclic peptides into detailed molecular graphs at the atomic level, and efficiently handling non-canonical amino acids and complex macrocyclic peptide structures. PepExplainer's effectiveness is enhanced by utilizing the correlation between peptide enrichment data from selection-based focused library and bioactivity data, and employing transfer learning to improve bioactivity predictions of macrocyclic peptides against IL-17C/IL-17 RE interaction. Additionally, PepExplainer underwent further validation for bioactivity prediction using an additional set of thirteen newly synthesized macrocyclic peptides. Moreover, it enabled the optimization of the IC50 of a macrocyclic peptide, reducing it from 15 nM to 5.6 nM based on the contribution score provided by PepExplainer. This achievement underscores PepExplainer's skill in deciphering complex molecular patterns, highlighting its potential to accelerate the discovery and optimization of macrocyclic peptides.


Subject(s)
Deep Learning , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemical synthesis , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/pharmacology , Macrocyclic Compounds/chemical synthesis , Molecular Structure , Humans , Peptides/chemistry , Peptides/pharmacology , Structure-Activity Relationship , Dose-Response Relationship, Drug
3.
J Med Chem ; 67(3): 1888-1899, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38270541

ABSTRACT

Cyclic peptides are gaining attention for their strong binding affinity, low toxicity, and ability to target "undruggable" proteins; however, their therapeutic potential against intracellular targets is constrained by their limited membrane permeability, and researchers need much time and money to test this property in the laboratory. Herein, we propose an innovative multimodal model called Multi_CycGT, which combines a graph convolutional network (GCN) and a transformer to extract one- and two-dimensional features for predicting cyclic peptide permeability. The extensive benchmarking experiments show that our Multi_CycGT model can attain state-of-the-art performance, with an average accuracy of 0.8206 and an area under the curve of 0.8650, and demonstrates satisfactory generalization ability on several external data sets. To the best of our knowledge, it is the first deep learning-based attempt to predict the membrane permeability of cyclic peptides, which is beneficial in accelerating the design of cyclic peptide active drugs in medicinal chemistry and chemical biology applications.


Subject(s)
Deep Learning , Cell Membrane Permeability , Chemistry, Pharmaceutical , Peptides, Cyclic/pharmacology , Permeability
4.
J Chem Inf Model ; 63(24): 7655-7668, 2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38049371

ABSTRACT

The development of potentially active peptides for specific targets is critical for the modern pharmaceutical industry's growth. In this study, we present an efficient computational framework for the discovery of active peptides targeting a specific pharmacological target, which combines a conditional variational autoencoder (CVAE) and a classifier named TCPP based on the Transformer and convolutional neural network. In our example scenario, we constructed an active cyclic peptide library targeting interleukin-17C (IL-17C) through a library-based in vitro selection strategy. The CVAE model is trained on the preprocessed peptide data sets to generate potentially active peptides and the TCPP further screens the generated peptides. Ultimately, six candidate peptides predicted by the model were synthesized and assayed for their activity, and four of them exhibited promising binding affinity to IL-17C. Our study provides a one-stop-shop for target-specific active peptide discovery, which is expected to boost up the process of peptide drug development.


Subject(s)
Interleukin-17 , Peptides, Cyclic , Peptides, Cyclic/pharmacology , Interleukin-17/metabolism , Peptides
5.
J Med Chem ; 66(16): 11187-11200, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37480587

ABSTRACT

The combination of library-based screening and artificial intelligence (AI) has been accelerating the discovery and optimization of hit ligands. However, the potential of AI to assist in de novo macrocyclic peptide ligand discovery has yet to be fully explored. In this study, an integrated AI framework called PepScaf was developed to extract the critical scaffold relative to bioactivity based on a vast dataset from an initial in vitro selection campaign against a model protein target, interleukin-17C (IL-17C). Taking the generated scaffold, a focused macrocyclic peptide library was rationally constructed to target IL-17C, yielding over 20 potent peptides that effectively inhibited IL-17C/IL-17RE interaction. Notably, the top two peptides displayed exceptional potency with IC50 values of 1.4 nM. This approach presents a viable methodology for more efficient macrocyclic peptide discovery, offering potential time and cost savings. Additionally, this is also the first report regarding the discovery of macrocyclic peptides against IL-17C/IL-17RE interaction.


Subject(s)
Artificial Intelligence , Interleukin-17 , Machine Learning , Peptides , Peptide Library
6.
New Phytol ; 236(3): 1168-1181, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35927946

ABSTRACT

Improving nitrogen (N) use efficiency (NUE) to reduce the application of N fertilisers in a way that benefits the environment and reduces farmers' costs is an ongoing objective for sustainable wheat production. However, whether and how arbuscular mycorrhizal fungi (AMF) affect NUE in wheat is still not well explored. Three independent but complementary experiments were conducted to decipher the contribution of roots and AMF to the N uptake and utilisation efficiency in wheat. We show a temporal complementarity pattern between roots and AMF in shaping NUE of wheat. Pre-anthesis N uptake efficiency mainly depends on root functional traits, but the efficiency to utilise the N taken up during pre-anthesis for producing grains (EN,g ) is strongly affected by AMF, which might increase the uptake of phosphorus and thereby improve photosynthetic carbon assimilation. Root association with AMF reduced the N remobilisation efficiency in varieties with high EN,g ; whilst the overall grain N concentration increased, due to a large improvement in post-anthesis N uptake supported by AMF and/or other microbes. The findings provide evidence for the importance of managing AMF in agroecosystems, and an opportunity to tackle the contradiction between maximising grain yield and protein concentration in wheat breeding.


Subject(s)
Mycorrhizae , Carbon/metabolism , Edible Grain/metabolism , Fertilizers , Fungi/metabolism , Mycorrhizae/metabolism , Nitrogen/metabolism , Phosphorus/metabolism , Plant Breeding , Plant Roots/metabolism , Soil , Triticum/microbiology
7.
J Environ Manage ; 213: 142-150, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29494930

ABSTRACT

Nitrogen (N) and phosphorus (P) losses are a potential limitation for the direct application of biogas slurry as a substitute for chemical fertilizer in irrigated rice production systems. The hypothesis was tested that a rice-duck co-culture promotes the rice N and P use efficiencies, reducing the losses of these nutrient elements through run-offs and enabling the use of biogas slurry as a substitute for chemical fertilizers. A field split-plot experiment was carried out to test the hypothesis. Our results showed that the direct application of biogas slurry was harmful for rice production. Compared with rice monoculture under chemical fertilization, biogas slurry application reduced N and P accumulation in grains, P use efficiency, and grain yield by 3.6%, 7.8%, 12.7%, and 14.8%, respectively, but increased the total N and P concentrations in the surface water 1.4- and 2.7-fold, respectively, on average on the eleventh day after fertilization. However, rice-duck co-culture compensated for the negative effects of biogas slurry on rice production. Under the biogas slurry application and in line with our hypothesis, the rice-duck co-culture significantly increased N and P accumulation and use efficiencies, as well as grain yield to levels similar to those acquired with chemical fertilization treatments. Meanwhile, total N and P concentrations were significantly lower for rice-duck co-culture than those of rice monoculture under biogas slurry application. Our results suggest that rice-duck co-culture can maintain rice yield and reduce the risks of N and P loss to local environments when utilizing biogas slurry as a substitute for chemical fertilizers.


Subject(s)
Biofuels , Coculture Techniques , Oryza , Animals , Ducks , Fertilizers , Nitrogen
SELECTION OF CITATIONS
SEARCH DETAIL
...