Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Language
Publication year range
1.
Heliyon ; 9(12): e22798, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38125513

ABSTRACT

Diabetes and depression are common comorbid conditions that impose a substantial health burden. Acupuncture may effectively improve symptoms in patients with diabetes and depression, but the underlying mechanism remains unclear. Brain-derived neurotrophic factor (BDNF) may play a vital role in the effects of acupuncture on diabetes and depression comorbidity. This review summarizes the potential role of BDNF in acupuncture for diabetes and depression comorbidity. BDNF appears to exert its effects via the BDNF-TrkB-ERK-CREB signaling pathway. BDNF levels are reduced in diabetes and depression, and acupuncture may increase BDNF expression, improving symptoms and glycemic control. High-quality research is needed to validate the efficacy of acupuncture for diabetes and depression comorbidity. Randomized controlled trials and mechanistic studies should investigate the BDNF pathway and other potential mechanisms. Improved understanding of the links between diabetes, depression and acupuncture may enable targeted and individualized patient care. Earlier diagnosis and management of diabetes and depression comorbidity should also be a priority.

2.
Front Neurol ; 14: 1165145, 2023.
Article in English | MEDLINE | ID: mdl-37693756

ABSTRACT

Background: Non-invasive brain stimulation (NIBS) techniques are now widely used in patients with disorders of consciousness (DOC) for accelerating their recovery of consciousness, especially minimally conscious state (MCS). However, the effectiveness of single NIBS techniques for consciousness rehabilitation needs further improvement. In this regard, we propose to enhance from bottom to top the thalamic-cortical connection by using transcutaneous auricular vagus nerve stimulation (taVNS) and increase from top to bottom cortical-cortical connections using simultaneous high-definition transcranial direct current stimulation (HD-tDCS) to reproduce the network of consciousness. Methods/design: The study will investigate the effect and safety of simultaneous joint stimulation (SJS) of taVNS and HD-tDCS for the recovery of consciousness. We will enroll 84 MCS patients and randomize them into two groups: a single stimulation group (taVNS and HD-tDCS) and a combined stimulation group (SJS and sham stimulation). All patients will undergo a 4-week treatment. The primary outcome will be assessed using the coma recovery scale-revised (CRS-R) at four time points to quantify the effect of treatment: before treatment (T0), after 1 week of treatment (T1), after 2 weeks of treatment (T2), and after 4 weeks of treatment (T3). At the same time, nociception coma scale-revised (NCS-R) and adverse effects (AEs) will be collected to verify the safety of the treatment. The secondary outcome will involve an analysis of electroencephalogram (EEG) microstates to assess the response mechanisms of dynamic brain networks to SJS. Additionally, CRS-R and AEs will continue to be obtained for a 3-month follow-up (T4) after the end of the treatment. Discussion: This study protocol aims to innovatively develop a full-time and multi-brain region combined neuromodulation paradigm based on the mesocircuit model to steadily promote consciousness recovery by restoring thalamocortical and cortical-cortical interconnections.

3.
Braz J Psychiatry ; 45(2): 93-101, 2023 May 11.
Article in English | MEDLINE | ID: mdl-37015869

ABSTRACT

INTRODUCTION: Seed-based analysis has shown that transcutaneous auricular vagus nerve stimulation (taVNS) can modulate the dysfunctional brain network in patients with major depressive disorder (MDD). However, the voxel-based neuropsychological mechanism of taVNS on patients with first-episode MDD is poorly understood. The objective of this study was to assess the effects of an 8-week course of taVNS on patients with first-episode MDD. METHODS: Twenty-two patients with first-episode MDD accepted an 8-week course of taVNS treatment. Resting-state functional magnetic resonance imaging (rs-fMRI) scans were performed before and after treatment. Voxel-based analyses were performed to characterize spontaneous brain activity. Healthy controls (n=23) were recruited to minimize test-retest effects. Analysis of covariance (ANCOVA) was performed to ascertain treatment-related changes. Then, correlations between changes in brain activity and the Hamilton Depression Rating Scale (HAM-D)/Hamilton Anxiety Scale (HAM-A) remission rate were estimated. RESULTS: Significant group-by-time interactions on voxel-based analyses were observed in the inferior ventral striatum (VSi) and precuneus. Post-hoc analyses showed that taVNS inhibited higher brain activity in the VSi, while upregulating it in the precuneus. Functional connectivity (FC) between the VSi and precuneus decreased. Positive correlations were found between the HAM-D remission rate and changes in brain activity in the VSi. CONCLUSION: taVNS reduced the FC between VSi and precuneus by normalizing the abnormal spontaneous brain activity of VSi in first-episode MDD patients.


Subject(s)
Depressive Disorder, Major , Transcutaneous Electric Nerve Stimulation , Vagus Nerve Stimulation , Humans , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/therapy , Vagus Nerve Stimulation/methods , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Transcutaneous Electric Nerve Stimulation/methods
4.
Front Neurosci ; 17: 1145699, 2023.
Article in English | MEDLINE | ID: mdl-37008222

ABSTRACT

Background: Transcutaneous auricular vagus nerve stimulation (taVNS) is a non-invasive neuromodulation technique. Several studies have reported the effectiveness of taVNS in patients with disorders of consciousness (DOC); however, differences in the modulation paradigm have led to inconsistent treatment outcomes. Methods/design: This prospective exploratory trial will include 15 patients with a minimally conscious state (MCS) recruited according to the coma recovery scale-revised (CRS-R). Each patient will receive 5 different frequencies of taVNS (1, 10, 25, 50, and 100 Hz); sham stimulation will be used as a blank control. The order of stimulation will be randomized, and the patients' CRS-R scores and resting electroencephalography (EEG) before and after stimulation will be recorded. Discussion: The overall study of taVNS used in treating patients with DOC is still in the preliminary stage of exploration. Through this experiment, we aim to explore the optimal stimulation frequency parameters of taVNS for the treatment of DOC patients. Furthermore, we expect to achieve a stable improvement of consciousness in DOC patients by continuously optimizing the neuromodulation paradigm of taVNS for the treatment of DOC patients. Clinical trial registration: https://www.chictr.org.cn/index.aspx, identifier ChiCTR 2200063828.

5.
Braz. J. Psychiatry (São Paulo, 1999, Impr.) ; 45(2): 93-101, Mar.-Apr. 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1439557

ABSTRACT

Introduction: Seed-based analysis has shown that transcutaneous auricular vagus nerve stimulation (taVNS) can modulate the dysfunctional brain network in patients with major depressive disorder (MDD). However, the voxel-based neuropsychological mechanism of taVNS on patients with first-episode MDD is poorly understood. The objective of this study was to assess the effects of an 8-week course of taVNS on patients with first-episode MDD. Methods: Twenty-two patients with first-episode MDD accepted an 8-week course of taVNS treatment. Resting-state functional magnetic resonance imaging (rs-fMRI) scans were performed before and after treatment. Voxel-based analyses were performed to characterize spontaneous brain activity. Healthy controls (n=23) were recruited to minimize test-retest effects. Analysis of covariance (ANCOVA) was performed to ascertain treatment-related changes. Then, correlations between changes in brain activity and the Hamilton Depression Rating Scale (HAM-D)/Hamilton Anxiety Scale (HAM-A) remission rate were estimated. Results: Significant group-by-time interactions on voxel-based analyses were observed in the inferior ventral striatum (VSi) and precuneus. Post-hoc analyses showed that taVNS inhibited higher brain activity in the VSi, while upregulating it in the precuneus. Functional connectivity (FC) between the VSi and precuneus decreased. Positive correlations were found between the HAM-D remission rate and changes in brain activity in the VSi. Conclusion: taVNS reduced the FC between VSi and precuneus by normalizing the abnormal spontaneous brain activity of VSi in first-episode MDD patients.

6.
Anat Rec (Hoboken) ; 306(12): 2958-2973, 2023 12.
Article in English | MEDLINE | ID: mdl-35195374

ABSTRACT

The brain is probably the most complex organ in the human body. It has been the hot spot and direction of brain science research all over the world to deeply study the pathogenesis of various kinds of brain diseases and find effective treatment methods. Acupuncture is a nonpharmacological therapy of traditional Chinese medicine originating from ancient clinical practice. The research on the treatment of brain diseases by acupuncture has been constantly enriched and updated with the promotion of interdisciplinary research. In order to account for the current achievements in the field of acupuncture for brain diseases, this article reviews it in terms of conception, application, and exploration. Based on the literature review, we found that in the past decades, acupuncture has received widespread attention worldwide and many literatures have reported the clinical efficacy and underlying mechanisms of acupuncture in the treatment of brain diseases. Presently, the conception, application, and exploration of acupuncture in the treatment of brain diseases have evolved from empirical medicine to evidence-based medicine and precision medicine, and are experiencing a deeper understanding of the information about acupuncture regulating the brain function based on interdisciplinary research.


Subject(s)
Acupuncture Therapy , Acupuncture , Brain Diseases , Humans , Medicine, Chinese Traditional , Brain Diseases/therapy , Brain
7.
Front Neurosci ; 17: 1274432, 2023.
Article in English | MEDLINE | ID: mdl-38260020

ABSTRACT

Disordered Consciousness (DOC) is among neurological disorders for which there is currently no admitted treatment. The pathogenesis of DOC is still unclear, covering a variety of indistinguishable types of diseases, high misdiagnosis rate and poor prognosis. Most treatments remain to be clarified in the future to provide adequate evidence for clinical guidance. Neuromodulation technology aims to regulate neural circuits to promote awakening more directly. At present, it is confirmed that the potential of transcutaneous auricular vagus nerve stimulation (taVNS) as a therapeutic tool is worth exploring in the context of consciousness disorders, as previously proposed for invasive forms of VNS, in which the means of stimulating the vagus nerve to change the brain areas related to cosciousness have also received widespread attention. In this paper, we review the literature on taVNS and DOC to better understand the current status and development prospect of taVNS treament as a non-invasive neuromodulation method with sensitivity and/or specificity at the single subject.

SELECTION OF CITATIONS
SEARCH DETAIL
...