Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 62(45): 18533-18542, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37897813

ABSTRACT

The design of highly stable and dual-emission lanthanide metal-organic frameworks (Ln-MOFs) is promising for practical chemical sensor applications. Rational design and synthesis of photoresponsive organic ligands provide a feasible approach to achieving highly fluorescent dual-emission Ln-MOFs. In this study, a tetraphenylpyrazine-based AIE ligand, H4L, was synthesized and combined with lanthanide ions (including Sm3+, Eu3+, Gd3+, and Tb3+) to fabricate a series of Ln-MOFs named Ln-L. The single-crystal analysis revealed that all Ln-L belonged to the tetragonal space group P4212 and featured a 2-fold interpenetrated 3D structure. Leveraging rational design, Eu-L exhibited a sensitive response to tetracycline, making it a promising fluorescence sensor for tetracycline detection. The experiments demonstrated that Eu-L could rapidly and quantitatively detect tetracycline and its analogs within 30 s. The lowest detection limits for tetracycline, oxytetracycline, and chlortetracycline were 0.43, 0.92, and 0.81 µM, respectively. Additionally, the probe displayed excellent reusability and exceptional selectivity. A plausible sensing mechanism was proposed, supported by both experimental and theoretical analyses. Furthermore, the study discovered that on-site and real-time determination of TCs in aqueous solutions could be achieved by using luminescence test papers and composite films derived from Eu-L.


Subject(s)
Heterocyclic Compounds , Lanthanoid Series Elements , Metal-Organic Frameworks , Luminescence , Ligands , Tetracycline , Anti-Bacterial Agents
2.
ACS Nano ; 17(8): 7624-7635, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37053382

ABSTRACT

The spoilage and forgery of perishable products such as food, drugs, and vaccines cause serious health hazards and economic loss every year. Developing highly efficient and convenient time-temperature indicators (TTIs) to realize quality monitoring and anticounterfeiting simultaneously is urgent but remains a challenge. To this end, a kind of colorimetric fluorescent TTI, based on CsPbBr3@SiO2 nanoparticles with tunable quenching kinetics, is developed. The kinetics rate of the CsPbBr3-based TTIs is easily regulated by adjusting temperature, concentration of the nanoparticles, and addition of salts, stemming from the cation exchange effect, common-ion effect, and structural damage by water. Typically, when combined with europium complexes, the developed TTIs show an irreversible dynamic change in fluorescent colors from green to red upon increasing temperature and time. Furthermore, a locking encryption system with multiple logics is also realized by combining TTIs with different kinetics. The correct information only appears at specific ranges of time and temperature under UV light and is irreversibly self-erased afterward. The simple and low-cost composition and the ingenious design of kinetics-tunable fluorescence in this work stimulate more insights and inspiration toward intelligent TTIs, especially for high-security anticounterfeiting and quality monitoring, which is really conducive to ensuring food and medicine safety.

3.
ACS Macro Lett ; 9(7): 969-973, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-35648609

ABSTRACT

The precise synthesis of chiral poly(silyl ether)s remains a challenge, in contrast to the well-studied preparation of poly(silyl ether)s. Herein, an unprecedented approach for the synthesis of optically active poly(silyl ether)s with main-chain chirality has been developed via CuH-catalyzed hydrosilylation polymerization of diketones and silanes. The polymerization features low catalyst loading, mild condition, and broad substrate scope, including a wide range of aromatic diketones and heteroaromatic diketones with excellent yields and enantioselectivities (up to 98% yield and 99% ee). Thermal analysis indicated chiral poly(silyl ether)s exhibit good thermal properties. These enantiomerically enriched poly(silyl ether)s with good thermal stability have a promising application in chiral separation.

4.
Chemistry ; 25(4): 989-992, 2019 Jan 18.
Article in English | MEDLINE | ID: mdl-30447110

ABSTRACT

Short gram-scale asymmetric syntheses of asperazine, pestalazine A, and their unnatural congeners thereof, have been achieved in ≈10 steps by using readily accessible starting materials. The nickel-catalyzed reductive coupling protocol was utilized as a key step for the direct construction of C3asp3 -C7'sp2 bond furnishing the diaryl-substituted quaternary carbon centers with remarkable steric hindrance. The streamlined access to this core structure of heterodimeric tryptophans under the mild reaction conditions, makes this strategy hold a great promise in the concise synthesis of other relevant oligomeric pyrroloindoline alkaloids with unique C3a-C7' linkages.

SELECTION OF CITATIONS
SEARCH DETAIL
...