Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38612391

ABSTRACT

C19 steroids and C22 steroids are vital intermediates for the synthesis of steroid drugs. Compared with C19 steroids, C22 steroids are more suitable for synthesizing progesterone and adrenocortical hormones, albeit less developed. 9,22-dihydroxy-23,24-bisnorchol-4-ene-3-one(9-OHBA), due to its substituents at positions C-9 and C-22, is a beneficial and innovative steroid derivative for synthesizing corticosteroids. We focused on the C22 pathway in Mycobacterium fortuitum ATCC 35855, aiming to develop a productive strain that produces 9-OHBA. We used a mutant strain, MFΔkstD, that knocked out kstds from Mycobacterium fortuitum ATCC 35855 named MFKD in this study as the original strain. Hsd4A and FadA5 are key enzymes in controlling the C19 metabolic pathway of steroids in Mycobacterium fortuitum ATCC 35855. After knocking out hsd4A, MFKDΔhsd4A accumulated 81.47% 9-OHBA compared with 4.13% 9-OHBA in the strain MFKD. The double mutant MFKDΔhsd4AΔfadA5 further improved the selectivity of 9-OHBA to 95.13%, and 9α-hydroxy-4-androstenedione (9-OHAD) decreased to 0.90% from 4.19%. In the end, we obtained 6.81 g/L 9-OHBA from 10 g/L phytosterols with a molar yield of 80.33%, which showed the best performance compared with formerly reported strains.


Subject(s)
Mycobacterium fortuitum , Phytosterols , Mycobacterium fortuitum/genetics , Androstenedione , Molar , Progesterone
2.
Appl Microbiol Biotechnol ; 107(11): 3419-3428, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37093308

ABSTRACT

Acyl-CoA dehydrogenase (ChsE) is involved in the steroid side-chain degradation process. However, their function in vivo remains unclear. In this study, three ChsE, ChsE1-ChsE2, ChsE3, and ChsE4-ChsE5, were identified in Mycolicibacterium neoaurum, and their functions in vivo are studied and compared with those from Mycobacterium tuberculosis in vitro. By gene knockout, complementation, and the bioconversion of phytosterols, the function of ChsE was elucidated that ChsE4-ChsE5 could utilize C27, C24, and C22 steroids in vivo. ChsE3 could utilize C27 and C24 steroids in vivo. ChsE1-ChsE2 could utilize C27, C24, and C22 steroids in vivo. What is more, the production strain of a C22 steroid, 3-oxo-4,17-pregadiene-20-carboxylic acid methyl ester (PDCE), is constructed with ChsE overexpression. This study improved the understanding of the steroid bioconversion pathway and proposed a method of the production of a new C22 steroid. KEY POINTS: • Three ChsE paralogs from M. neoaurum are identified and studied. • The function of ChsE is overlapped in vivo. • A C22 steroid (PDCE) producer was constructed with ChsE overexpression.


Subject(s)
Mycobacterium tuberculosis , Phytosterols , Steroids/metabolism , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Acyl-CoA Dehydrogenase
SELECTION OF CITATIONS
SEARCH DETAIL
...