Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Plants (Basel) ; 12(19)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37836094

ABSTRACT

The ratoon rice cropping system (RR) is developing rapidly in China due to its comparable annual yield and lower agricultural and labor inputs than the double rice cropping system (DR). Here, to further compare the greenhouse effects of RR and DR, a two-year field experiment was carried out in Hubei Province, central China. The ratoon season showed significantly lower cumulative CH4 emissions than the main season of RR, the early season and late season of DR. RR led to significantly lower annual cumulative CH4 emissions, but no significant difference in cumulative annual N2O emissions compared with DR. In RR, the main and ratoon seasons had significantly higher and lower grain yields than the early and late seasons of DR, respectively, resulting in comparable annual grain yields between the two systems. In addition, the ratoon season had significantly lower global warming potential (GWP) and greenhouse gas intensity-based grain yield (GHGI) than the main and late seasons. The annual GWP and GHGI of RR were significantly lower than those of DR. In general, the differences in annual CH4 emissions, GWP, and GHGI could be primarily attributed to the differences between the ratoon season and the late season. Moreover, GWP and GHGI exhibited significant positive correlations with cumulative emissions of CH4 rather than N2O. The leaf area index (LAI) and biomass accumulation in the ratoon season were significantly lower than those in the main season and late season, and CH4 emissions, GWP, and GHGI showed significant positive correlations with LAI, biomass accumulation and grain yield in the ratoon and late season. Finally, RR had significantly higher net ecosystem economic benefits (NEEB) than DR. Overall, this study indicates that RR is a green cropping system with lower annual CH4 emissions, GWP, and GHGI as well as higher NEEB.

2.
Ying Yong Sheng Tai Xue Bao ; 20(9): 2166-72, 2009 Sep.
Article in Chinese | MEDLINE | ID: mdl-20030138

ABSTRACT

By using static chamber-gas chromatographic techniques, the CH4 and N2O emissions from the paddy soil in southeast Hubei were measured. Four treatments were installed, i.e., no-tillage plus no-fertilization (NT0), conventional tillage plus no-fertilization (CT0), no-tillage plus fertilization (NTC), and conventional tillage plus fertilization (CTC). In all treatments, the CH4 emission had a seasonal variation of increasing first and decreasing then, while the N2O emission had no significant seasonal variation. Fertilization increased the CH4 and N2O emissions significantly. NT0 increased the CH4 emission and decreased the N2O emission significantly, compared with CT0; NTC only decreased the CH4 emission and increased the N2O emission slightly, compared with CTC. The analysis on the integrated greenhouse effect of CH4 and N2O showed that NT0 increased the effect by 25.9%, compared with CT0, while NTC decreased the effect by 10.1%, compared with CTC. Therefore, a reasonable arrangement of fertilization and no-tillage could reduce the integrated greenhouse effect of CH4 and N2O from paddy field.


Subject(s)
Greenhouse Effect , Methanol/analysis , Nitrous Oxide/analysis , Oryza/growth & development , Soil/analysis , Agriculture/methods , China , Fertilizers , Oryza/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...