Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(39): 90772-90786, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37462872

ABSTRACT

A series of adsorption/oxidation bifunctional material with different Fe(II) loading amounts was prepared by using ultrahigh crosslinking adsorption resin (LXQ-10) as a carrier and FeCl2 as an impregnating solution. The bifunctional material was characterized by BET, SEM, XRD, XPS, and EPR. The effects of Fe loading, reaction temperature, and space velocity on benzene adsorption efficiency were investigated using self-made experimental equipment to explore the optimal reaction condition. The adsorption results were fitted and analyzed by using four typical models: the quasi-first-order kinetic model, the quasi-second-order kinetic model, Elovich's kinetic model, and the Weber and Morris kinetic model. The quasi-first-order kinetic model had the highest R2 value (0.998) and the best applicability. The fitting effect of the Freundlich equation (R2 = 0.997) was better than that of the Langmuir equation (R2 = 0.919). Furthermore, the effects of Fe loading, H2O2 concentration, benzene inlet concentration, and temperature on the catalytic oxidation efficiency of benzene were studied. The catalytic oxidation efficiency of 3-Fe(II)/LXQ-10 was maintained at about 95% at a temperature of 303 K and an H2O2 concentration of 150 mmol/L. Compared with the adsorption efficiency, the catalytic oxidation efficiency of bifunctional resin materials in a heterogeneous Fenton system was remarkably improved and had excellent stability. A possible migration and transformation path during benzene removal was proposed according to the results of the analysis of GC-MS intermediates. This study provided a novel process for the adsorption and oxidative degradation of VOCs.


Subject(s)
Iron , Water Pollutants, Chemical , Benzene , Industrial Waste , Adsorption , Hydrogen Peroxide , Kinetics , Ferrous Compounds , Hydrogen-Ion Concentration
2.
Phytother Res ; 36(2): 928-937, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35132703

ABSTRACT

Abdominal aortic aneurysm (AAA) is a lethal disease without available medicine for treatment. This study aimed to evaluate the efficiency of eugenol (4-allyl-2-methoxyphenol) against AAA and the underlying mechanism. Eugenol is the major bioactive component of clove. A mouse AAA model was established through porcine pancreatic elastase (PPE) incubation peri-adventitially and 1% 3-aminopropanonitrile (BAPN) diet. Continuous AAA progression from day 0 to day 15 was observed after PPE plus BAPN treatment, according to the AAA diameter and histopathological evaluation. Accompanying with AAA progression, sustained increased expressions of CD68, COX-2 and NF-κB were observed through immunofluorescence assay. After elucidation the efficiency of eugenol against AAA progression by AAA diameter, hematoxylin-eosin staining and orcein staining, the down-regulations of eugenol on COX-2 and NF-κB were further detected by immunohistochemistry and western blot. Eugenol not only blocked AAA expansion and protected the integrity of aortic structure in a dose-dependent manner, but also held high oral bioavailability. Excellent efficiency, high oral bioavailability and down-regulation on COX-2/NF-κB endowed eugenol great potential for future AAA therapy.


Subject(s)
Aortic Aneurysm, Abdominal , Animals , Aortic Aneurysm, Abdominal/drug therapy , Aortic Aneurysm, Abdominal/metabolism , Aortic Aneurysm, Abdominal/pathology , Cyclooxygenase 2/metabolism , Disease Models, Animal , Disease Progression , Down-Regulation , Eugenol/pharmacology , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Swine
3.
Curr Med Sci ; 41(5): 901-908, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34643880

ABSTRACT

OBJECTIVE: Abdominal aortic aneurysm (AAA) is a significant medical problem with a high mortality rate. Nevertheless, the underlying mechanism for the progression and regression of AAA is unknown. METHODS: Experimental model of AAA was first created by porcine pancreatic elastase incubation around the infrarenal aorta of C57BL/6 mice. Then, AAA progression and regression were evaluated based on the diameter and volume of AAA. The aortas were harvested for hematoxylin-eosin staining (HE), orcein staining, sirius red staining, immunofluorescence analysis and perls' prussian blue staining at the indicated time point. Finally, ß-aminopropionitrile monofumarate (BAPN) was used to explore the underlying mechanism of the regression of AAA. RESULTS: When we extended the observation period to 100 days, we not only observed an increase in the AAA diameter and volume in the early stage, but also a decrease in the late stage. Consistent with AAA diameter and volume, the aortic thickness showed the same tendency based on HE staining. The elastin and collagen content first degraded and then regenerated, which corresponds to the early deterioration and late regression of AAA. Then, endogenous up-regulation of lysyl oxidase (LOX) was detected, accompanying the regression of AAA, as detected by an immunofluorescent assay. BAPN and LOX inhibitor considerably inhibited the regression of AAA, paralleling the degradation of elastin lamella and collagen. CONCLUSION: Taken together, we tentatively conclude that endogenous re-generation of LOX played an influential role in the regression of AAA. Therefore, regulatory factors on the generation of LOX exhibit promising therapeutic potential against AAA.


Subject(s)
Aminopropionitrile/analogs & derivatives , Aortic Aneurysm, Abdominal/pathology , Extracellular Matrix Proteins/metabolism , Pancreatic Elastase/adverse effects , Protein-Lysine 6-Oxidase/metabolism , Aminopropionitrile/administration & dosage , Aminopropionitrile/pharmacology , Animals , Aortic Aneurysm, Abdominal/chemically induced , Aortic Aneurysm, Abdominal/drug therapy , Aortic Aneurysm, Abdominal/metabolism , Collagen/metabolism , Disease Models, Animal , Disease Progression , Elastin/metabolism , Mice , Mice, Inbred C57BL , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...