Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Matern Fetal Neonatal Med ; 36(2): 2279021, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37946331

ABSTRACT

OBJECTIVES: Multiple factors associated with neural tube defects (NTDs) risk have been identified, yet there is little evidence on the possible effects of maternal stressful life events. In this study, we aimed to investigate the association between stressful life events during the periconceptional period and risk of NTDs in offspring. METHODS: Relevant literature was searched in PubMed, Springer Link, ScienceDirect, and Cochrane Library up to July 2023. The pooled odds ratio (OR) and 95% confidence interval (CI) of NTDs risk with maternal stressful life events were estimated using a random effects model. Publication bias was assessed using Egger's regression asymmetry test and Begg's rank correlation test with Begg's funnel plot. RESULTS: Analysis results showed that mothers who experienced stressful life events during the periconceptional period were at greater risk of having NTDs offspring (OR: 1.37, 95% CI: 1.08-1.73) than those who did not. In subgroup analysis, the pooled OR was 1.37 (1.13-1.67) and 1.73 (0.36-8.32) for with and without adjusting for folic acid supplementation in each included study, while was 1.37 (1.13-1.67) and 1.64 (0.39-6.88) for exposure time of three months preconception until three months post conception and one year preconception until three months post conception, respectively. CONCLUSIONS: This study suggests that maternal stressful life events during the periconceptional period are significantly associated with higher NTDs risk in offspring. Tailored approaches for evaluating the risk and policy of NTDs among women of childbearing age should emphasize individual stressful experiences before and during early pregnancy.


Subject(s)
Neural Tube Defects , Pregnancy , Female , Humans , Neural Tube Defects/epidemiology , Neural Tube Defects/etiology , Mothers , Fertilization , Odds Ratio , Folic Acid
2.
Cell Rep ; 42(2): 112075, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36774551

ABSTRACT

Booster immunizations and breakthrough infections can elicit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariant neutralizing activity. However, the durability of the neutralization response is unknown. We characterize the sensitivity of BA.1, BA.2, BA.2.75, BA.4/BA.5, BF.7, BQ.1.1, and XBB against neutralizing antibodies from vaccination, hybrid immunity, and breakthrough infections 4-6 months after vaccination and infection. We show that a two-dose CoronaVac or a third-dose ZF2001 booster elicits limited neutralization against Omicron subvariants 6 months after vaccination. Hybrid immunity as well as Delta, BA.1, and BA.2 breakthrough infections induce long-term persistence of the antibody response, and over 70% of sera neutralize BA.1, BA.2, BA.4/BA.5, and BF.7. However, BQ.1.1 and XBB, followed by BA.2.75, are more resistant to neutralization, with neutralizing titer reductions of ∼9- to 41-fold, ∼16- to 63-fold, and ∼4- to 25-fold, respectively. These data highlight additional vaccination in CoronaVac- or ZF2001-vaccinated individuals and provide insight into the durability of neutralization against Omicron subvariants.


Subject(s)
Breakthrough Infections , COVID-19 , Humans , COVID-19/prevention & control , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral
3.
Genome Med ; 14(1): 146, 2022 12 29.
Article in English | MEDLINE | ID: mdl-36581867

ABSTRACT

BACKGROUND: The emergence of SARS-CoV-2 Omicron subvariants has raised questions regarding resistance to immunity by natural infection or immunization. We examined the sensitivity of Delta and Omicron subvariants (BA.1, BA.1.1, BA.2, BA.2.12.1, BA.4/5, and BA.3) to neutralizing antibodies from BBIBP-CorV-vaccinated and BBIBP-CorV- or ZF2001-boosted individuals, as well as individuals with Delta and BA.1 breakthrough infections, and determined their fusogenicity and infectivity. METHODS: In this cross-sectional study, serum samples from two doses of BBIBP-CorV-vaccinated individuals 1 (n = 36), 3 (n = 36), and 7 (n = 37) months after the second dose; BBIBP-CorV- (n = 25) or ZF2001-boosted (n = 30) individuals; and fully vaccinated individuals with Delta (n = 30) or BA.1 (n = 26) infection were collected. The serum-neutralizing reactivity and potency of bebtelovimab were assessed against D614G, Delta, and Omicron subvariants (BA.1, BA.1.1, BA.2, BA.2.12.1, BA.4/5, and BA.3) through a pseudovirus neutralization assay. The fusogenicity and infectivity of D614G, Delta, and Omicron subvariants were determined by cell-cell fusion assay and pseudovirus infection assay, respectively. RESULTS: Omicron subvariants markedly escaped vaccine-elicited neutralizing antibodies after two doses of BBIBP-CorV with comparable efficiency. A third dose vaccination of BBIBP-CorV or ZF2001 increased neutralizing antibody titers and breadth against Delta and three Omicron subvariants. Delta and BA.1 breakthrough infections induced comparable neutralizing antibody titers against D614G and Delta variants, whereas BA.1 breakthrough infections elicited a stronger and broader antibody response against three Omicron subvariants than Delta breakthrough infections. BA.2.12.1 and BA.4/5 are more resistant to immunity induced by breakthrough infections. Bebtelovimab had no significant loss of potency against the Delta and Omicron subvariants. Cell culture experiments showed Omicron subvariants to be less fusogenic and have higher infectivity than D614G and Delta with comparable efficiency. CONCLUSIONS: These findings have important public health implications and highlight the importance of repeated exposure to SARS-CoV-2 antigens to broaden the neutralizing antibody response against Omicron subvariants.


Subject(s)
COVID-19 , Humans , Cross-Sectional Studies , SARS-CoV-2 , Antibodies, Neutralizing , Breakthrough Infections , Antibodies, Viral
5.
J Infect Dis ; 224(4): 586-594, 2021 08 16.
Article in English | MEDLINE | ID: mdl-33978754

ABSTRACT

BACKGROUND: The duration of humoral and T and B cell response after the infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains unclear. METHODS: We performed a cross-sectional study to assess the virus-specific antibody and memory T and B cell responses in coronavirus disease 2019 (COVID-19) patients up to 343 days after infection. Neutralizing antibodies and antibodies against the receptor-binding domain, spike, and nucleoprotein of SARS-CoV-2 were measured. Virus-specific memory T and B cell responses were analyzed. RESULTS: We enrolled 59 patients with COVID-19, including 38 moderate, 16 mild, and 5 asymptomatic patients; 31 (52.5%) were men and 28 (47.5%) were women. The median age was 41 years (interquartile range, 30-55). The median day from symptom onset to enrollment was 317 days (range 257 to 343 days). We found that approximately 90% of patients still have detectable immunoglobulin (Ig)G antibodies against spike and nucleocapsid proteins and neutralizing antibodies against pseudovirus, whereas ~60% of patients had detectable IgG antibodies against receptor-binding domain and surrogate virus-neutralizing antibodies. The SARS-CoV-2-specific IgG+ memory B cell and interferon-γ-secreting T cell responses were detectable in more than 70% of patients. CONCLUSIONS: Severe acute respiratory syndrome coronavirus 2-specific immune memory response persists in most patients approximately 1 year after infection, which provides a promising sign for prevention from reinfection and vaccination strategy.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Immunity, Cellular/immunology , Adult , B-Lymphocytes/immunology , Cross-Sectional Studies , Female , Humans , Immunoglobulin G/immunology , Immunologic Memory/immunology , Male , Middle Aged , Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology
6.
BMJ ; 351: h5765, 2015 Nov 19.
Article in English | MEDLINE | ID: mdl-26586515

ABSTRACT

STUDY QUESTION: Can avian influenza A (H7N9) virus be transmitted between unrelated individuals in a hospital setting? METHODS: An epidemiological investigation looked at two patients who shared a hospital ward in February 2015, in Quzhou, Zhejiang Province, China. Samples from the patients, close contacts, and local environments were examined by real time reverse transcriptase (rRT) polymerase chain reaction (PCR) and viral culture. Haemagglutination inhibition and microneutralisation assays were used to detect specific antibodies to the viruses. Primary outcomes were clinical data, infection source tracing, phylogenetic tree analysis, and serological results. STUDY ANSWER AND LIMITATIONS: A 49 year old man (index patient) became ill seven days after visiting a live poultry market. A 57 year old man (second patient), with a history of chronic obstructive pulmonary disease, developed influenza-like symptoms after sharing the same hospital ward as the index patient for five days. The second patient had not visited any poultry markets nor had any contact with poultry or birds within 15 days before the onset of illness. H7N9 virus was identified in the two patients, who both later died. Genome sequences of the virus isolated from both patients were nearly identical, and genetically similar to the virus isolated from the live poultry market. No specific antibodies were detected among 38 close contacts. Transmission between the patients remains unclear, owing to the lack of samples collected from their shared hospital ward. Although several environmental swabs were positive for H7N9 by rRT-PCR, no virus was cultured. Owing to delayed diagnosis and frequent hospital transfers, no serum samples were collected from the patients, and antibodies to H7N9 viruses could not be tested. WHAT THIS STUDY ADDS: Nosocomial H7N9 transmission might be possible between two unrelated individuals. Surveillance on patients with influenza-like illness in hospitals as well as chickens in live poultry markets should be enhanced to monitor transmissibility and pathogenicity of the virus. FUNDING, COMPETING INTERESTS, DATA SHARING: Funding support from the Program of International Science and Technology Cooperation of China (2013DFA30800), Basic Work on Special Program for Science and Technology Research (2013FY114600), National Natural Science Foundation of China (81402730), Special Program for Prevention and Control of Infectious Diseases in China (2013ZX10004218), US National Institutes of Health (1R01-AI108993), Zhejiang Province Major Science and Technology Program (2014C03039), and Quzhou Science and Technology Program (20111084). The authors declare no other interests and have no additional data.


Subject(s)
Cross Infection/epidemiology , Influenza A Virus, H7N9 Subtype , Influenza, Human/transmission , Adult , Aged , China/epidemiology , Female , Humans , Influenza A Virus, H7N9 Subtype/isolation & purification , Influenza, Human/epidemiology , Influenza, Human/virology , Male , Middle Aged , Real-Time Polymerase Chain Reaction , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...