Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38525903

ABSTRACT

The c-axis piezoresistivity is a fundamental and important parameter of graphite, but its value near zero pressure has not been well determined. Herein, a new method for studying the c-axis piezoresistivity of van der Waals materials near zero pressure is developed on the basis of in situ scanning electron microscopy and finite element simulation. The c-axis piezoresistivity of microscale highly oriented pyrolytic graphite (HOPG) is found to show a large value of 5.68 × 10-5 kPa-1 near zero pressure and decreases by 2 orders of magnitude to the established value of ∼10-7 kPa-1 when the pressure increases to 200 MPa. By modulating the serial tunneling barrier model on the basis of the stacking faults, we describe the c-axis electrical transport of HOPG under compression. The large c-axis piezoresistivity near zero pressure and its large decrease in magnitude with pressure are attributed to the rapid stiffening of the electromechanical properties under compression.

2.
Nanotechnology ; 35(21)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38377619

ABSTRACT

Resistance switching (RS) offers promising applications in a variety of areas. In particular, silicon oxide (SiOx) under RS can serve as electron sources in new types of miniature vacuum electron tubes. In this work, planar nanoscale vacuum channel transistors (NVCTs) with graphene electrodes and RS SiOxelectron sources were developed. In each RS-NVCT, the resistance between the ground and the gate underwent high-low-high transitions, which resulted from formation and subsequent rupture of Si conducting filaments. Electrons were emitted from the post-reset Si filaments and the current received by the collector (IC) was well controlled by the gate voltage (VG). The transfer characteristics reveal thatICwas quite sensitive toVGwhen RS occurred. WithVGsweeping from 0 to -20 V, the obtained subthreshold swing (SS) of 76 mV dec-1was quite close to the theoretical limit of the SS of a field effect transistor at room temperature (60 mV dec-1). The largest ON/OFF ratio was of the order of 106. The output characteristics of the devices indicate that the dependence ofICon the collector voltage (VC) weakened at highVCvalues. These results demonstrate the application potential of RS-NVCTs as either switching devices or amplifiers.

3.
iScience ; 26(1): 105781, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36594037

ABSTRACT

Fast, simple, and label-free detections and distinctions are desirable in cell biology analysis and diagnosis. Here, a biosensor based on terahertz metamaterial has luxuriant gaps, which can excite dipole resonance is designed. Filling the gaps with various analytes can change the biosensor's capacitance resulting in electromagnetic properties changing. The idea is verified by simulations and experiments. The theoretical sensitivity of the biosensor approaches 290 GHz/RIU, and the experimental concentration sensitivity of the biosensor is ≥ 275 kHz mL/cell. Candida Albicans, Escherichia Coli, and Shigella Dysenteriae were selected as analytes, and the measurement frequency shift is 270 GHz, 290 GHz, and 310 GHz, respectively, which indicates that the biosensor can detect and distinguish these bacteria. Successfully detection of low-concentration glioblastoma (200 cells/mL), showing great potential for the early diagnosis of glioblastoma of the biosensor. This biosensor supplies a new horizon for cell detection, which will significantly benefit cell biology investigation.

4.
Nano Lett ; 22(3): 1270-1277, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35073093

ABSTRACT

We report a tunneling diode enabling efficient and dense electron emission from SiO2 with low poisoning sensitivity. Benefiting from the shallow SiO2 channel exposed to vacuum and the low electron affinity of SiO2 (0.9 eV), hot electrons tunneling into the SiO2 channel from the cathode of the diode are efficiently emitted into vacuum with much less restriction in both space and energy than those in previous tunneling electron sources. Monte Carlo simulations on the device performance show an emission efficiency as high as 87.0% and an emission density up to 3.0 × 105 A/cm2. By construction of a tunneling diode based on Si conducting filaments in electroformed SiO2, an emission efficiency up to 83.7% and an emission density up to 4.4 × 105 A/cm2 are experimentally realized. Electron emission from the devices is demonstrated to be independent of vacuum pressure from 10-4 to 10-1 Pa without poisoning.

5.
Micromachines (Basel) ; 14(1)2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36677145

ABSTRACT

On-chip microscale vacuum chambers with high sealing performance and electrical feedthroughs are highly desired for microscale vacuum electronic devices and other MEMS devices. In this paper, we report an on-chip microscale vacuum chamber which achieves a high sealing performance by using monolayer graphene as lateral electrical feedthrough. A vacuum chamber with the dimensions of π × 2 mm × 2 mm × 0.5 mm is fabricated by anodically bonding a glass chip with a through-hole between two Si chips in a vacuum, after monolayer graphene electrodes have been transferred to the surface of one of the Si chips. Benefiting from the atomic thickness of monolayer graphene, the leak rate of Si-glass bonding interface with a monolayer graphene feedthrough is measured at less than 2 × 10-11 Pa·m3/s. The monolayer graphene feedthrough exhibits a minor resistance increase from 22.5 Ω to 31 Ω after anodic bonding, showing good electrical conductance. The pressure of the vacuum chamber is estimated to be 185 Pa by measuring the breakdown voltage. Such a vacuum is found to maintain for more than 50 days without obvious degradation, implying a high sealing performance with a leak rate of less than 1.02 × 10-16 Pa·m3/s.

SELECTION OF CITATIONS
SEARCH DETAIL
...