Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Cereb Blood Flow Metab ; 44(6): 911-924, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38230631

ABSTRACT

Imaging hemodynamic responses to interictal spikes holds promise for presurgical epilepsy evaluations. Understanding the hemodynamic response function is crucial for accurate interpretation. Prior interictal neurovascular coupling data primarily come from anesthetized animals, impacting reliability. We simultaneously monitored calcium fluctuations in excitatory neurons, hemodynamics, and local field potentials (LFP) during bicuculline-induced interictal events in both isoflurane-anesthetized and awake mice. Isoflurane significantly affected LFP amplitude but had little impact on the amplitude and area of the calcium signal. Anesthesia also dramatically blunted the amplitude and latency of the hemodynamic response, although not its area of spread. Cerebral blood volume change provided the best spatial estimation of excitatory neuronal activity in both states. Targeted silencing of the thalamus in awake mice failed to recapitulate the impact of anesthesia on hemodynamic responses suggesting that isoflurane's interruption of the thalamocortical loop did not contribute either to the dissociation between the LFP and the calcium signal nor to the alterations in interictal neurovascular coupling. The blood volume increase associated with interictal spikes represents a promising mapping signal in both the awake and anesthetized states.


Subject(s)
Hemodynamics , Isoflurane , Neurons , Wakefulness , Animals , Mice , Wakefulness/drug effects , Wakefulness/physiology , Hemodynamics/drug effects , Neurons/drug effects , Isoflurane/pharmacology , Anesthesia , Male , Cerebrovascular Circulation/drug effects , Cerebrovascular Circulation/physiology , Mice, Inbred C57BL , Bicuculline/pharmacology , Neurovascular Coupling/drug effects , Neurovascular Coupling/physiology
2.
Epilepsia ; 64(7): 1939-1950, 2023 07.
Article in English | MEDLINE | ID: mdl-37133275

ABSTRACT

OBJECTIVE: Focal epilepsy is thought to be a network disease, in which epileptiform activity can spread noncontiguously through the brain via highly interconnected nodes, or hubs, within existing networks. Animal models confirming this hypothesis are scarce, and our understanding of how distant nodes are recruited is also lacking. Whether interictal spikes (IISs) also create and reverberate through a network is not well understood. METHODS: We injected bicuculline into the S1 barrel cortex and employed multisite local field potential and Thy-1 and parvalbumin (PV) cell mesoscopic calcium imaging during IISs to monitor excitatory and inhibitory cells in two monosynaptically connected nodes and one disynaptically connected node: ipsilateral secondary motor area (iM2), contralateral S1 (cS1), and contralateral secondary motor area (cM2). Node participation was analyzed with spike-triggered coactivity maps. Experiments were repeated with 4-aminopyridine as an epileptic agent. RESULTS: We found that each IIS reverberated throughout the network, differentially recruiting both excitatory and inhibitory cells in all connected nodes. The strongest response was found in iM2. Paradoxically, node cM2, which was connected disynaptically to the focus, was recruited more intensely than node cS1, which was connected monosynaptically. The explanation for this effect could be found in node-specific excitatory/inhibitory (E/I) balance, as cS1 demonstrated greater PV inhibitory cell activation compared with cM2, where Thy-1 excitatory cells were more heavily recruited. SIGNIFICANCE: Our data show that IISs spread noncontiguously by exploiting fiber pathways that connect nodes in a distributed network and that E/I balance plays a critical role in node recruitment. This multinodal IIS network model can be used to investigate cell-specific dynamics in the spatial propagation of epileptiform activity.


Subject(s)
Epilepsy , Animals , Brain , Brain Mapping , Bicuculline/pharmacology , 4-Aminopyridine
SELECTION OF CITATIONS
SEARCH DETAIL
...