Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Biosci ; 12(1): 113, 2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35869493

ABSTRACT

BACKGROUND: Previous data have reported that Sentrin/SUMO-specific protease 6 (SENP6) is involved in ischaemic brain injury and induces neuronal apoptosis after cerebral ischaemia, but the role of SENP6 in microglia-induced neuroinflammation and its underlying mechanism remain poorly understood. This research systematically explored the function and potential mechanism of SENP6 in microglia-induced neuroinflammation after ischaemic stroke. RESULTS: We first identified an increased protein level of SENP6 in microglia after cerebral ischaemia. Then, we demonstrated that SENP6 promoted detrimental microglial phenotype polarization. Specifically, SENP6-mediated de-SUMOylation of ANXA1 targeted the IκB kinase (IKK) complex and selectively inhibited the autophagic degradation of IKKα in an NBR1-dependent manner, activating the NF-κB pathway and enhancing proinflammatory cytokine expression. In addition, downregulation of SENP6 in microglia effectively reduced cocultured neuronal damage induced by ischaemic stroke. More importantly, we employed an AAV-based technique to specifically knockdown SENP6 in microglia/macrophages, and in vivo experiments showed that SENP6 inhibition in microglia/macrophages notably lessened brain ischaemic infarct size, decreased neurological deficit scores, and ameliorated motor and cognitive function in mice subjected to cerebral ischaemia surgery. CONCLUSION: We demonstrated a previously unidentified mechanism by which SENP6-mediated ANXA1 de-SUMOylation regulates microglial polarization and our results strongly indicated that in microglia, inhibition of SENP6 may be a crucial beneficial therapeutic strategy for ischaemic stroke.

2.
World J Gastroenterol ; 27(7): 561-575, 2021 Feb 21.
Article in English | MEDLINE | ID: mdl-33642829

ABSTRACT

Although coronavirus (CoV) infection is often characterized by respiratory symptoms, the virus can also result in extrapulmonary symptoms, especially the symptoms related to the digestive system. The outbreak of coronavirus disease 2019 (COVID-19) is currently the world's most pressing public health threat and has a significant impact on civil societies and the global economy. The occurrence of digestive symptoms in patients with COVID-19 is closely related to the development and prognosis of the disease. Moreover, thus far, there are no specific antiviral drug or vaccine approved for the treatment or prevention of COVID-19. Therefore, we elaborate on the effects of CoVs on the digestive system and the potential underlying mechanisms.


Subject(s)
Coronavirus Infections/complications , Digestive System Diseases/virology , Host-Pathogen Interactions , SARS-CoV-2/physiology , Humans
3.
Psychopharmacology (Berl) ; 237(7): 2089-2101, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32494972

ABSTRACT

RATIONALE: Approximately 20-40% of patients with cancer will experience brain metastasis (BM), which has a great impact on the quality of life and survival rates of patients. Whole brain radiotherapy (WBRT) is an effective method for the treatment of BM. However, it cannot be ignored that WBRT might induce a series of neuropsychiatric side effects, including cognitive dysfunction (CD). Accumulating evidence shows that the gut microbiota and the gut-microbiota-brain axis may play a vital role in the pathogenesis of CD. OBJECTIVE AND METHODS: We adopted WBRT to mimic CD after a hierarchical cluster analysis of the Morris water maze test (MWMT) results. In addition, we observed the effects of antibiotics and prebiotics on WBRT-induced CD. Variations were revealed via the 16S rRNA sequencing analysis at different levels. RESULTS: The 16S rRNA sequencing analysis revealed an altered composition of gut microbiota between CD and non-CD phenotypes. Furthermore, we observed a decrease in the levels of Phylum-Bacteroidete, Class-Bacteroidia, and Order-Bacteroidales in the CD group and an increase in the Genus-Allobaculum level after WBRT. Pretreatment with antibiotics caused a significant decrease in the level of Phylum-TM7 01, whereas an increase in the levels of Class-Gammaproteobacteria, Order-Enterobacteriales, and Species-Escherichia coli. After pretreatment with probiotics, the levels of Phylum-Cyanobacteria, Class-4C0d-2, and Order-YS2 were decreased, while the levels of Family-Bacteroidaceae, Genus-Bacteroides, and Species-Parabacteroides distasonis were increased. CONCLUSIONS: WBRT-induced CD might be highly related to abnormal composition of gut microbiota. Strategies improving the composition of the gut microbiota may provide beneficial effects on CD in individuals exposed to WBRT.


Subject(s)
Brain/physiology , Brain/radiation effects , Cognitive Dysfunction/etiology , Cognitive Dysfunction/microbiology , Gastrointestinal Microbiome/physiology , Gastrointestinal Microbiome/radiation effects , Animals , Brain/drug effects , Cognitive Dysfunction/psychology , Gastrointestinal Microbiome/drug effects , Male , Maze Learning/drug effects , Maze Learning/physiology , Maze Learning/radiation effects , Mice , Mice, Inbred C57BL , Prebiotics/administration & dosage , Probiotics/administration & dosage
4.
CNS Neurosci Ther ; 25(6): 685-696, 2019 06.
Article in English | MEDLINE | ID: mdl-30680947

ABSTRACT

AIMS: Anesthesia and surgery can cause delirium-like symptoms postoperatively. Increasing evidence suggests that gut microbiota is a physiological regulator of the brain. Herein, we investigated whether gut microbiota plays a role in postoperative delirium (POD). METHODS: Mice were separated into non-POD and POD phenotypes after abdominal surgery by applying hierarchical clustering analysis to behavioral tests. Fecal samples were collected, and 16S ribosomal RNA gene sequencing was performed to detect differences in gut microbiota composition among sham, non-POD, and POD mice. Fecal bacteria from non-POD and POD mice were transplanted into antibiotics-induced pseudo-germ-free mice to investigate the effects on behaviors. RESULTS: α-diversity and ß-diversity indicated differences in gut microbiota composition between the non-POD and POD mice. At the phylum level, the non-POD mice had significantly higher levels of Tenericutes, which were not detected in the POD mice. At the class level, levels of Gammaproteobacteria were higher in the POD mice, whereas the non-POD mice had significantly higher levels of Mollicutes, which were not detected in the POD mice. A total of 20 gut bacteria differed significantly between the POD and non-POD mice. Interestingly, the pseudo-germ-free mice showed abnormal behaviors prior to transplant. The pseudo-germ-free mice that received fecal bacteria transplants from non-POD mice but not from POD mice showed improvements in behaviors. CONCLUSIONS: Abnormal gut microbiota composition after abdominal surgery may contribute to the development of POD. A therapeutic strategy that targets gut microbiota could provide a novel alterative for POD treatment.


Subject(s)
Abdomen/surgery , Delirium/microbiology , Gastrointestinal Microbiome , Postoperative Complications/microbiology , Animals , Biodiversity , Fecal Microbiota Transplantation , Germ-Free Life , Male , Mice, Inbred C57BL , Random Allocation
SELECTION OF CITATIONS
SEARCH DETAIL
...