Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38328193

ABSTRACT

Glycolysis has traditionally been thought to take place in the cytosol but we observed the enrichment of glycolytic enzymes in propagating waves of the cell cortex in human epithelial cells. These waves reflect excitable Ras/PI3K signal transduction and F-actin/actomyosin networks that drive cellular protrusions, suggesting that localized glycolysis at the cortex provides ATP for cell morphological events such as migration, phagocytosis, and cytokinesis. Perturbations that altered cortical waves caused corresponding changes in enzyme localization and ATP production whereas synthetic recruitment of glycolytic enzymes to the cell cortex enhanced cell spreading and motility. Interestingly, the cortical waves and ATP levels were positively correlated with the metastatic potential of cancer cells. The coordinated signal transduction, cytoskeletal, and glycolytic waves in cancer cells may explain their increased motility and their greater reliance on glycolysis, often referred to as the Warburg effect.

2.
Sci Rep ; 14(1): 3167, 2024 02 07.
Article in English | MEDLINE | ID: mdl-38326365

ABSTRACT

Different exogenous electric fields (EF) can guide cell migration, disrupt proliferation, and program cell development. Studies have shown that many of these processes were initiated at the cell membrane, but the mechanism has been unclear, especially for conventionally non-excitable cells. In this study, we focus on the electrostatic aspects of EF coupling with the cell membrane by eliminating Faradaic processes using dielectric-coated microelectrodes. Our data unveil a distinctive biphasic response of the ERK signaling pathway of epithelial cells (MCF10A) to alternate current (AC) EF. The ERK signal exhibits both inhibition and activation phases, with the former triggered by a lower threshold of AC EF, featuring a swifter peaking time and briefer refractory periods than the later-occurring activation phase, induced at a higher threshold. Interestingly, the biphasic ERK responses are sensitive to the waveform and timing of EF stimulation pulses, depicting the characteristics of electrostatic and dissipative interactions. Blocker tests and correlated changes of active Ras on the cell membrane with ERK signals indicated that both EGFR and Ras were involved in the rich ERK dynamics induced by EF. We propose that the frequency-dependent dielectric relaxation process could be an important mechanism to couple EF energy to the cell membrane region and modulate membrane protein-initiated signaling pathways, which can be further explored to precisely control cell behavior and fate with high temporal and spatial resolution.


Subject(s)
MAP Kinase Signaling System , Signal Transduction , MAP Kinase Signaling System/physiology , Cell Differentiation , Epithelial Cells , Cell Membrane
3.
Front Cell Dev Biol ; 11: 1195806, 2023.
Article in English | MEDLINE | ID: mdl-37492221

ABSTRACT

In this article, we provide detailed protocols on using optogenetic dimerizers to acutely perturb activities of guanine nucleotide exchange factors (GEFs) specific to Ras, Rac or Rho small GTPases of the migratory networks in various mammalian and amoeba cell lines. These GEFs are crucial components of signal transduction networks which link upstream G-protein coupled receptors to downstream cytoskeletal components and help cells migrate through their dynamic microenvironment. Conventional approaches to perturb and examine these signaling and cytoskeletal networks, such as gene knockout or overexpression, are protracted which allows networks to readjust through gene expression changes. Moreover, these tools lack spatial resolution to probe the effects of local network activations. To overcome these challenges, blue light-inducible cryptochrome- and LOV domain-based dimerization systems have been recently developed to control signaling or cytoskeletal events in a spatiotemporally precise manner. We illustrate that, within minutes of global membrane recruitment of full-length GEFs or their catalytic domains only, widespread increases or decreases in F-actin rich protrusions and cell size occur, depending on the particular node in the networks targeted. Additionally, we demonstrate localized GEF recruitment as a robust assay system to study local network activation-driven changes in polarity and directed migration. Altogether, these optical tools confirmed GEFs of Ras superfamily GTPases as regulators of cell shape, actin dynamics, and polarity. Furthermore, this optogenetic toolbox may be exploited in perturbing complex signaling interactions in varied physiological contexts including mammalian embryogenesis.

4.
Dev Cell ; 54(5): 608-623.e5, 2020 09 14.
Article in English | MEDLINE | ID: mdl-32877650

ABSTRACT

The Ras/PI3K/extracellular signal-regulated kinases (ERK) signaling network plays fundamental roles in cell growth, survival, and migration and is frequently activated in cancer. Here, we show that the activities of the signaling network propagate as coordinated waves, biased by growth factor, which drive actin-based protrusions in human epithelial cells. The network exhibits hallmarks of biochemical excitability: the annihilation of oppositely directed waves, all-or-none responsiveness, and refractoriness. Abrupt perturbations to Ras, PI(4,5)P2, PI(3,4)P2, ERK, and TORC2 alter the threshold, observations that define positive and negative feedback loops within the network. Oncogenic transformation dramatically increases the wave activity, the frequency of ERK pulses, and the sensitivity to EGF stimuli. Wave activity was progressively enhanced across a series of increasingly metastatic breast cancer cell lines. The view that oncogenic transformation is a shift to a lower threshold of excitable Ras/PI3K/ERK network, caused by various combinations of genetic insults, can facilitate the assessment of cancer severity and effectiveness of interventions.


Subject(s)
Carcinogenesis/pathology , Cell Transformation, Neoplastic/genetics , Epithelial Cells/metabolism , Signal Transduction/physiology , Actins/metabolism , Carcinogenesis/genetics , Cell Line, Tumor , Cell Transformation, Neoplastic/pathology , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/genetics , ras Proteins/metabolism
5.
Sci Adv ; 6(32): eaay7682, 2020 08.
Article in English | MEDLINE | ID: mdl-32821814

ABSTRACT

The mechanisms regulating protrusions during amoeboid migration exhibit excitability. Theoretical studies have suggested the possible coexistence of traveling and standing waves in excitable systems. Here, we demonstrate the direct transformation of a traveling into a standing wave and establish conditions for the stability of this conversion. This theory combines excitable wave stopping and the emergence of a family of standing waves at zero velocity, without altering diffusion parameters. Experimentally, we show the existence of this phenomenon on the cell cortex of some Dictyostelium and mammalian mutant strains. We further predict a template that encompasses a spectrum of protrusive phenotypes, including pseudopodia and filopodia, through transitions between traveling and standing waves, allowing the cell to switch between excitability and bistability. Overall, this suggests that a previously-unidentified method of pattern formation, in which traveling waves spread, stop, and turn into standing waves that rearrange to form stable patterns, governs cell motility.

6.
Dev Cell ; 45(1): 67-82.e6, 2018 04 09.
Article in English | MEDLINE | ID: mdl-29634937

ABSTRACT

We sought to understand how cells collectively elongate epithelial tubes. We first used 3D culture and biosensor imaging to demonstrate that epithelial cells enrich Ras activity, phosphatidylinositol (3,4,5)-trisphosphate (PIP3), and F-actin to their leading edges during migration within tissues. PIP3 enrichment coincided with, and could enrich despite inhibition of, F-actin dynamics, revealing a conserved migratory logic compared with single cells. We discovered that migratory cells can intercalate into the basal tissue surface and contribute to tube elongation. We then connected molecular activities to subcellular mechanics using force inference analysis. Migration and transient intercalation required specific and similar anterior-posterior ratios of interfacial tension. Permanent intercalations were distinguished by their capture at the boundary through time-varying tension dynamics. Finally, we integrated our experimental and computational data to generate a finite element model of tube elongation. Our model revealed that intercalation, interfacial tension dynamics, and high basal stress are together sufficient for mammary morphogenesis.


Subject(s)
Actins/metabolism , Cell Movement/physiology , Epithelial Cells/cytology , Mammary Glands, Animal/cytology , Morphogenesis/physiology , ras Proteins/metabolism , Animals , Cell Proliferation , Cells, Cultured , Epithelial Cells/metabolism , Female , Mammary Glands, Animal/metabolism , Mice , Mice, Transgenic , Signal Transduction , Surface Tension
7.
Proc Natl Acad Sci U S A ; 110(43): 17462-7, 2013 Oct 22.
Article in English | MEDLINE | ID: mdl-24101519

ABSTRACT

Both preclinical and clinical studies suggest that brief cycles of ischemia and reperfusion in the arm or leg may protect the heart against injury following prolonged coronary artery occlusion and reperfusion, a phenomenon known as remote ischemic preconditioning. Recent studies in mice indicate that increased plasma interleukin-10 (IL-10) levels play an important role in remote ischemic preconditioning induced by clamping the femoral artery for 5 min followed by 5 min of reperfusion for a total of three cycles. In this study, we demonstrate that remote ischemic preconditioning increases plasma IL-10 levels and decreases myocardial infarct size in wild-type mice but not in littermates that are heterozygous for a knockout allele at the locus encoding hypoxia-inducible factor (HIF) 1α. Injection of a recombinant adenovirus encoding a constitutively active form of HIF-1α into mouse hind limb muscle was sufficient to increase plasma IL-10 levels and decrease myocardial infarct size. Exposure of C2C12 mouse myocytes to cyclic hypoxia and reoxygenation rapidly increased levels of IL-10 mRNA, which was blocked by administration of the HIF-1 inhibitor acriflavine or by expression of short hairpin RNA targeting HIF-1α or HIF-1ß. Chromatin immunoprecipitation assays demonstrated that binding of HIF-1 to the Il10 gene was induced when myocytes were subjected to cyclic hypoxia and reoxygenation. Taken together, these data indicate that HIF-1 activates Il10 gene transcription and is required for remote ischemic preconditioning.


Subject(s)
Hypoxia-Inducible Factor 1/metabolism , Interleukin-10/metabolism , Ischemic Preconditioning, Myocardial/methods , Myocardial Infarction/metabolism , Acriflavine/pharmacology , Animals , Aryl Hydrocarbon Receptor Nuclear Translocator/antagonists & inhibitors , Aryl Hydrocarbon Receptor Nuclear Translocator/genetics , Aryl Hydrocarbon Receptor Nuclear Translocator/metabolism , Cell Hypoxia , Cell Line , Hypoxia-Inducible Factor 1/antagonists & inhibitors , Hypoxia-Inducible Factor 1/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Immunoblotting , Interleukin-10/blood , Interleukin-10/genetics , Mice , Mice, Knockout , Myoblasts, Skeletal/cytology , Myoblasts, Skeletal/drug effects , Myoblasts, Skeletal/metabolism , Myocardial Infarction/genetics , Myocardial Infarction/prevention & control , Myocardium/metabolism , Myocardium/pathology , Phosphorylation , Protein Binding , Proto-Oncogene Proteins c-akt/metabolism , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction
8.
World J Gastroenterol ; 18(7): 704-11, 2012 Feb 21.
Article in English | MEDLINE | ID: mdl-22363144

ABSTRACT

AIM: To investigate the effects of ESC-3 isolated from crocodile bile on the growth and apoptosis induction of human cholangiocarcinoma cells. METHODS: ESC-3 was isolated from crocodile bile by Sephadex LH-20 and RP-18 reversed-phase column. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay was conducted to determine the effects of ESC-3 on the proliferation of human cholangiocarcinoma cell lines (QBC939, Sk-ChA-1 and MZ-ChA-1). Giemsa staining, Hoechst 33258 and acridine orange/ethidium bromide staining showed the morphological changes of Mz-ChA-1 cells exposed to ESC-3 at different concentrations. Flow cytometry with regular propidium iodide (PI) staining was performed to analyze the cell cycle distribution of Mz-ChA-1 cells and to assess apoptosis by annexin v-fluorescein isothiocyanate (V-FITC)/PI staining. Rh123 staining was used to detect the alteration of mitochondrial membrane potential (ΔΨm). The protein levels of Bax, Bcl-2, Cdk2, cytochrome c and caspase-3 were further confirmed by Western blotting. RESULTS: ESC-3 significantly inhibited the growth of three human cholangiocarcinoma cell lines and arrested Mz-ChA-1 cell cycle at G0/G1 phase. Mz-ChA-1 cells showed typical apoptotic morphological changes after treated with ESC-3 (10 µg/mL) for 48 h. Cell death assay indicated that Mz-ChA-1 cells underwent apoptosis in a dose-dependent manner induced by ESC-3. In addition, ESC-3 treatment could downregulate the protein level of Bcl-2 and upregulate the Bax, leading to the increase in the ratio of Bax to Bcl-2 in Mz-ChA-1 cells. Meanwhile, cytochrome c was released from the mitochondria into the cytosol, which subsequently initiated the activation of caspase-3. All these events were associated with the collapse of the mitochondrial membrane potential. CONCLUSION: ESC-3, the active ingredient of crocodile bile, induced apoptosis in Mz-ChA-1 cells through the mitochondria-dependent pathway and may be a potential chemotherapeutic drug for the treatment of cholangiocarcinoma.


Subject(s)
Alligators and Crocodiles , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Bile/chemistry , Cholangiocarcinoma/pathology , Tissue Extracts/pharmacology , Animals , Antineoplastic Agents/therapeutic use , Cholangiocarcinoma/drug therapy , Drug Screening Assays, Antitumor , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Tissue Extracts/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...