Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Natl Sci Rev ; 11(3): nwad328, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38449877

ABSTRACT

The reprogramming of parental epigenomes in human early embryos remains elusive. To what extent the characteristics of parental epigenomes are conserved between humans and mice is currently unknown. Here, we mapped parental haploid epigenomes using human parthenogenetic and androgenetic embryos. Human embryos have a larger portion of genome with parentally specific epigenetic states than mouse embryos. The allelic patterns of epigenetic states for orthologous regions are not conserved between humans and mice. Nevertheless, it is conserved that maternal DNA methylation and paternal H3K27me3 are associated with the repression of two alleles in humans and mice. In addition, for DNA-methylation-dependent imprinting, we report 19 novel imprinted genes and their associated germline differentially methylated regions. Unlike in mice, H3K27me3-dependent imprinting is not observed in human early embryos. Collectively, allele-specific epigenomic reprogramming is different in humans and mice.

3.
Cell Discov ; 9(1): 13, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36717546

ABSTRACT

Although parental genomes undergo extensive epigenetic reprogramming to be equalized after fertilization, whether they play different roles in human zygotic genome activation (ZGA) remains unknown. Here, we mapped parental transcriptomes by using human parthenogenetic (PG) and androgenetic (AG) embryos during ZGA. Our data show that human ZGA is launched at the 8-cell stage in AG and bi-parental embryos, but at the morula stage in PG embryos. In contrast, mouse ZGA occurs at the same stage in PG and AG embryos. Mechanistically, primate-specific ZNF675 with AG-specific expression plays a role in human ZGA initiated from paternal genome at the 8-cell stage. AG-specifically expressed LSM1 is also critical for human maternal RNA degradation (MRD) and ZGA. The allelic expressions of ZNF675 and LSM1 are associated with their allelically epigenetic states. Notably, the paternally specific expressions of ZNF675 and LSM1 are also observed in diploid embryos. Collectively, human ZGA is initiated from paternal genome.

4.
Biophys Rep ; 9(6): 352-361, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-38524697

ABSTRACT

Embryo quality is a critical determinant of clinical outcomes in assisted reproductive technology (ART). A recent clinical trial investigating preimplantation DNA methylation screening (PIMS) revealed that whole genome DNA methylation level is a novel biomarker for assessing ART embryo quality. Here, we reinforced and estimated the clinical efficacy of PIMS. We introduce PIMS-AI, an innovative artificial intelligence (AI) based model, to predict the probability of an embryo producing live birth and subsequently assist ART embryo selection. Our model demonstrated robust performance, achieving an area under the curve (AUC) of 0.90 in cross-validation and 0.80 in independent testing. In simulated embryo selection, PIMS-AI attained an accuracy of 81% in identifying viable embryos for patients. Notably, PIMS-AI offers significant advantages over conventional preimplantation genetic testing for aneuploidy (PGT-A), including enhanced embryo discriminability and the potential to benefit a broader patient population. In conclusion, our approach holds substantial promise for clinical application and has the potential to significantly improve the ART success rate.

5.
Elife ; 92020 05 06.
Article in English | MEDLINE | ID: mdl-32374261

ABSTRACT

The histone modification writer Prdm9 has been shown to deposit H3K4me3 and H3K36me3 at future double-strand break (DSB) sites during the very early stages of meiosis, but the reader of these marks remains unclear. Here, we demonstrate that Zcwpw1 is an H3K4me3 reader that is required for DSB repair and synapsis in mouse testes. We generated H3K4me3 reader-dead Zcwpw1 mutant mice and found that their spermatocytes were arrested at the pachytene-like stage, which phenocopies the Zcwpw1 knock-out mice. Based on various ChIP-seq and immunofluorescence analyses using several mutants, we found that Zcwpw1's occupancy on chromatin is strongly promoted by the histone-modification activity of PRDM9. Zcwpw1 localizes to DMC1-labelled hotspots in a largely Prdm9-dependent manner, where it facilitates completion of synapsis by mediating the DSB repair process. In sum, our study demonstrates the function of ZCWPW1 that acts as part of the selection system for epigenetics-based recombination hotspots in mammals.


Subject(s)
Cell Cycle Proteins/metabolism , DNA Breaks, Double-Stranded , DNA Methylation , DNA Repair , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Meiosis , Spermatocytes/enzymology , Spermatogenesis , Animals , Cell Cycle Proteins/deficiency , Cell Cycle Proteins/genetics , Histone-Lysine N-Methyltransferase/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL
...