Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anim Biotechnol ; 34(7): 2571-2581, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36047452

ABSTRACT

The Alternative splicing (AS) of Carnitine palmitoyltransferase 1a (CPT1a) and their expression profiles had never been illuminated in goats until now. Herein, a novel splice transcript in the CPT1a gene that is predicted to result in the skipping of exons 6-19 (CPT1a-sv1) has been isolated in addition to the full-length transcript in goats. The result of RT-PCR showed that CPT1a-sv1 is 606 bp in length and consists of 6 exons. A novel exon 6 was consisted of partial exon 5 and partial exon 19, compared to that in CPT1a. RT-qPCR analysis showed that the expression patterns of CPT1a and CPT1a-sv1 are spatially different. In both kid and adult goats, the CPT1a transcript is strongly expressed in the liver, spleen, lung, kidney, and brain tissues. However, CPT1a-sv1 has a strong tissue-specific expression pattern, with moderate RNA levels in the liver and brain of kids, while highly expressed in the liver and minimally expressed in the brain of adults. We observed two transcripts to be involved in brain development. These findings improve our understanding of the function of the CPT1a gene in goats and provide information on the molecular mechanism of AS events.


Subject(s)
Alternative Splicing , Goats , Animals , Goats/genetics , Goats/metabolism , Base Sequence , Exons/genetics , Alternative Splicing/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
2.
J Zhejiang Univ Sci B ; 18(10): 878-885, 2017.
Article in English | MEDLINE | ID: mdl-28990378

ABSTRACT

The aim of this study was to optimize the conditions for the extraction of low-abundance proteins (LAPs) and the removal of abundant proteins (APs; ß-conglycinin and glycinin) from soybean meal. Single factor and orthogonal experiments were designed to determine the effects of four factors (isopropanol concentration, total extraction time, ultrasonic power, and ultrasonic time) on protein concentration in isopropanol extracts. Proteins in the isopropanol supernatant and the cold acetone precipitate of isopropanol were identified by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS). The results showed that the optimal conditions were 50% isopropanol, ultrasonic pretreatment for 15 min at 350 W, and a total extraction time of 1 h. Under these conditions, the protein concentration in the isopropanol extracts reached 0.8081 g/L. Many LAPs were detected, including ß-amylase, soybean agglutinin, soybean trypsin inhibitor, fumarylacetoacetase-like, phospholipase D alpha 1-like, oleosin, and even some unknown soybean proteins. The soybean APs (ß-conglycinin and glycinin) were not found. The method may be useful for discovering new soybean proteins and extracting enough LAPs of soybean to allow further studies of their physiological effects on animals without the influence of APs.


Subject(s)
Glycine max/chemistry , Soybean Proteins/isolation & purification , Plant Extracts/analysis
3.
In Vitro Cell Dev Biol Anim ; 52(9): 906-910, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27412498

ABSTRACT

Primary bovine mammary epithelial cells are not ideal models for long-term studies, because primary cells undergo a limited number of proliferations in vitro and enter into a growth-arrest stage called cell replicative senescence; we therefore must establish the immortalized bovine mammary epithelial cells (BMECs) in vitro. More importantly, the mechanisms of the relationship between immortalized and apoptotic cell remain unknown in BMECs. We therefore sought to elucidate the mechanisms of which immortalized cells escape the pathway of apoptotic signal. These cells were successfully immortalized without any signs of senescence. The maximum number of BMEC and E6E7 immortalized cells were reached after 6 d of culture. At this point, there were significantly more E6E7 immortalized cells than primary BMECs (P < 0.01). The population-doubling times of the E6E7 and SV40T immortalized cells were lowest at 48 and 72 h. We failed to detect the expression of the epithelial cell marker E-cadherin in BMECs; however, immortalized cells had low expression of E-cadherin. The expression of ß-catenin was markedly expressed in immortalized cells than in BMECs (P < 0.01). Caspase-3, caspase-9, and poly ADP-ribose polymerase (PARP) were detected; however, the cleavage of caspase-3 and PARP was not observed. Our data demonstrate that the expressions of caspase-9, caspase-3, and PARP are not sufficient for the apoptosis of immortalized cells and suggest that E-cadherin and ß-catenin might be an important indicator of the development of cancer.


Subject(s)
Antigens, Polyomavirus Transforming/metabolism , Epithelial Cells/metabolism , Mammary Glands, Animal/cytology , Oncogene Proteins, Viral/metabolism , Papillomavirus E7 Proteins/metabolism , Repressor Proteins/metabolism , Animals , Apoptosis , Biomarkers/metabolism , Cattle , Cell Line, Transformed , Cell Proliferation , Female , Fluorescent Antibody Technique
SELECTION OF CITATIONS
SEARCH DETAIL
...